SPURS ## **Salinity Processes Upper-ocean Regional Study** # **KNORR 209-1 Cruise Report** ## Funding by NASA, NSF and NOAA ## September 6 - October 9, 2012 ## **Contents** | Science Party | 2 | |---------------------|----| | Cruise Narrative | 3 | | General Timeline | 6 | | Thermosalinograph | 7 | | WHOI Mooring | 9 | | PMEL Moorings | 15 | | Hydrography | 17 | | Salinometry | 43 | | LADCP | 44 | | Underway CTD | 52 | | Microstructure | 58 | | Seagliders | 64 | | STS/PAL-APEX Floats | 70 | | Wave Gliders | 74 | | EcoMappers | 79 | | Mixed Layer Float | 83 | | Meteorological Mast | 86 | | SSS drifters | 87 | | Data Management | 88 | # **KNORR 209-1 Science Party** | Raymond Schmitt | Chief Scientist | WHOI | rschmitt@whoi.edu | |------------------|-----------------|------------|--------------------------------| | Dave Fratantoni | Scientist | WHOI | dfratantoni@whoi.edu | | J. Tom Farrar | Scientist | WHOI | jfarrar@whoi.edu | | Chris Duncombe | | | | | Rae | Scientist | WHOI | duncombe@whoi.edu | | Steve Faluotico | Scientist | WHOI | sfaluotico@whoi.edu | | Ken Decoteau | Scientist | WHOI | kdecoteau@whoi.edu | | Jeff Lord | Scientist | WHOI | jlord@whoi.edu | | Jason Smith | Scientist | WHOI | jsmith@whoi.edu | | Julian Schanze | Grad Student | WHOI/MIT | schanze@mit.edu | | Alec Bogdanoff | Grad Student | WHOI/MIT | abogdanoff@whoi.edu | | Oliver Sun | Scientist | WHOI | osun@whoi.edu | | Ben Hodges | Scientist | WHOI | bhodges@whoi.edu | | Eric Lindstrom | Scientist | NASA | eric.j.lindstrom@nasa.gov | | Fred Bingham | Scientist | UNCW | bigkahuna@fredbingham.com | | Andrew Whitely | Scientist | UNCW | aew4597@uncw.edu | | James Riley | Scientist | UMASS Dart | u_j2reilly@umassd.edu | | John Shanley | Scientist | PMEL | John.C.Shanley@noaa.gov | | Andrew Meyer | Scientist | PMEL | Andrew.Meyer@noaa.gov | | Andrey Scherbina | Scientist | UW | ashcherbina@apl.washington.edu | | Jesse Anderson | Grad Student | UW | jessea2@uw.edu | |----------------|--------------|------|--------------------------| | Phil Mele | Scientist | LDEO | pmele@ldeo.columbia.edu | | Julius Busecke | Grad Student | LDEO | julius@ldeo.columbia.edu | #### **Cruise Narrative:** The goal of this cruise was to deploy mooring floats, gliders and drifters in the regions of the salinity maximum near 25 N 38 W and survey the hydrography and microstructure of the area. We departed Woods Hole at 0830 on Sept. 6 in fine weather but anticipating rough seas from two hurricanes predicted to be in our path. Hurricane Leslie was moving slowly south of Bermuda but predicted to cross our path. Hurricane Michael was near our study site and moving slowly. Captain Adam Seamans chose to employ an extra generator for more speed so that we could get past the path of Leslie before she arrived. This strategy worked and fortunately Michael moved out of our way as we approached the study area. We deployed two STS-APEX floats in the path of Leslie hoping to record the ambient noise generated by the wind and rain of the storm. The overall ship track is shown in Figure 1. Deviations in the path to the Azores were necessitated by later storms. **Figure 1.** Overall cruise track for Knorr 209-1. Deviations from great circle routes were motivated by several hurricanes and tropical storms whose tracks are shown. The basic plan was to spend roughly one week deploying assets, including moorings, floats and gliders, about one week doing a small "control volume" with repeat surveys around the moorings, and about one week doing a feature survey, targeting a front or eddy identified by the satellites and models. The moorings required bathymetric surveys of the area before finalizing the sites. We used the Seabeam profiler to do the surveys for all three sites, then worked out a plan that preserved the desired right-angle geometry while providing satisfactory bottom conditions. Figure 2 shows the final mooring positions and bottom topography. ### **Bottom Survey** Prior to the mooring deployments, a bottom survey was conducted with the ship's SeaBeam 2100 Multibeam Bathymetric Survey System, manufactured by L-3 Communications SeaBeam Instruments. A full-ocean-depth CTD profile was collected prior to the start of the survey to provide an accurate sound speed profile, and it was confirmed that the SeaBeam reading matched those of the sound-speed corrected Knudsen 12-kHz depth sounder and the depth estimated from the pressure and altimeter reading from the ship's CTD. The bathymetry from the survey is displayed in Figure 2 with the actual deployment locations of the WHOI and PMEL moorings and their depths. A gridded version of these data is available as a netCDF binary file ("spurs_large_grid.grd"). **Figure 2:** Bottom depth from the *Knorr's* SeaBeam 2100 multibeam bathymetry system. The pink circle indicates the anchor position of the WHOI mooring (5291-m depth), and the pink squares mark the positions of the PMEL moorings. The WHOI mooring was deployed on September 14th in fine weather, then the PMEL Prawler North mooring the following day in similarly calm conditions. As it was necessary to evaluate the performance of the first Prawler, the second Prawler deployment was delayed for several days. The winds had come up during this time so time was spent deploying APEX floats, some of which had been deployed overnight between the first two mooring deployments. The Apex floats were deployed in a 4x4 array 90 nm on a side. The other floats were deployed on the transits to and from the site in order to enhance far field coverage and record wind and rain events under hurricanes. Seagliders, T-Gliders and Wave gliders were deployed largely in the mooring area, as they could self navigate to where they had to be. Salinity sensing surface drifters were deployed in 4 groups of 3 (triplets) along the eastern line of the APEX float array, three at the mooring site and three during a large scale survey. Details on the deployment of each instrument type can be found in the sections to follow. A "control volume" around the moorings was done with the Under-way CTD (UCTD) while steaming, the ships ADCP, and VMP casts for microstructure combined with CTD/LADCP casts at the 3 corners. Station positions were chosen to be outside the watch circles of the moorings, at 24°33'N, 38°02'W (WHOI), 24°47'N, 37°55'W (PMEL-N) and 24°29'N, 37° 46'W (PMEL-E). A large-scale survey was commenced on Sept. 28th to track the high salinity water which appeared to be moving north. The UW-CTD, CTD/LADCP were used for this (VMP had consistent computer failures so was deemed not safe to deploy). Several initial sections allowed us to identify the saltiest patch for a time series study with the CTD and IVER-AUV. After that we commenced an even larger-scale radiator pattern survey to take us back toward the moorings for glider recoveries (T-Gliders and French "Tenuse" Glider) and final CTD stations. We left the SPURS area on the morning of Friday October 5 heading toward the Azores as winds picked up from tropical storm Oscar. UCTDs were performed until the last working probe was lost, and several more STS-APEX floats were deployed on the transit. Through-out the cruise NASA Program Manger Eric Lindstrom maintained a cruise blog which featured all of the cruise activities and personnel at various times. It can be viewed and will be archived at: http://earthobservatory.nasa.gov/blogs/fromthefield/category/spurs/ SPURS information and data can be found at: http://spurs.jpl.nasa.gov Some highlights of KNORR209-1 include finding record-breaking high salinities in the area, the generally fine weather despite ever threatening hurricanes (which we credit to Eric), the successful deployment of so many new technologies and a phone call from the International Space Station. We also found the perfect motto for SPURS in the Knorr motto "Sal sume sub sol", which is taken as "more fun under the sun" but literally means "more salt under the sun". The Captain and crew of the Knorr are thanked for their positive, can-do attitude and willingness to help science in all ways possible. The science party is thanked for their overall professionalism and dedication to securing the best data set possible. Well done all! #### General Timeline for KNORR 209-1, Sept. 6- Oct. 9, 2012 - Sept. 6: Depart WH, Steam for ~25°N, ~38°W, water sampling for TSG every 4 hours - Sept. 6-12: Steam to avoid hurricanes, deploy APEX floats and do test CTD stations - Sept. 13: Arrive at 24°45'N, 38° 02'W, Do deep CTD cast and begin Seabeam survey of bottom at 3 mooring sites, deploy STS-APEX floats - Sept. 14: deploy WHOI mooring at 24° 34.867'N, 38° 0.00'W. - Sept. 15: deploy North PMEL mooring at 24° 44.464' N, 37° 56.424' W. Gliders - Sept. 16: deploy STS-APEX floats, gliders. - Sept. 17: deploy STS-APEX floats, 4 triplets of SSS Drifters, CTD and UCTD. - Sept. 18: deploy East PMEL mooring at 24° 30.968' N, 37° 48.234'W. STS-APEX floats, Lagrangian float, VMP, CTD and UCTD. - Sept. 19-22: Occupy 3 CTD & VMP stations near moorings in control volume time series, deploy Wave Gliders, T-Gliders - Sept. 22-27: STS Float deployments, CTD & VMP stations in large scale survey, UCTD - Sept. 28: Steam north and survey salty patch with UCTD & CTD - Sept. 29: Time series CTD stations while holding position, IVER-AUV missions - Sept. 30: IVER-AUV surface stratification study, start large scale radiator pattern survey - Oct. 1-4: Large-scale radiator survey with U/W CTD, and CTD stations - Oct. 5: Check moorings, CTD stations at moorings, retrieve T- gliders, begin steam for Azores - Oct. 6-8: Steam, Deploy STS-APEX floats - Oct. 9: Arrive Ponta Delgada, Azores The RV Knorr has an underway measurement system that collects and logs various data including sea surface salinity (SSS) and sea surface temperature (SST). Sea water is pumped from an
intake at about 5 meters depth at the front of the bow. Salinity (referred to as TSG) is measured by a SeaBird SBE45 sensor at the back of the main lab. An internal hull mounted SeaBird SBE48 at the intake point measures temperature. A comparison of the SBE45 and SBE48 temperatures suggests a lag of 4 minutes from the intake to the SBE45 (the averaging interval is 1 minute). Samples were collected for analysis with a Guildline Autosal (salinometer) from a faucet in the analytical lab between intake and the SBE45. Sampling interval was 4 hours with two replicate samples drawn. The unknown time lag between the analytical lab and the SBE45 presents an issue in determining the error between TSG data and samples. Standard water batch IAPSO P154 was used for the analysis. No obvious linear drift was detected over time except for variations in the variance possibly caused by either better/worse conditions for the salinometer or less/more variable TSG data surrounding the samples. The relevant lag from samples to the TSG can pose a great uncertainty in determining the errors relative to the salinometer. One approach was to compute a least square fit to the errors and do this for different lags to find the minimum error. It is suggested to additionally compare the samples in terms of surrounding TSG variance (see figure 2). If the variance surrounding a sample is low, the time lag becomes less important compared to a situation where the TSG is measuring a steep gradient or a very variable field. A constant line is fit in a weighted least square sense, where weights are defined as the inverse of the surrounding variance around each sample. This approach should yield an error estimate, which is somewhat less dependent on the lag time and also on variations in noting the time after sample retrieval. Another possible bias for the salt values could be the pressure within the system. The SBE45 computes the salinity for a 0 dbar surface pressure level, while there is measurable non-zero pressure in the system. A crude estimate with a pressure gauge yielded about 5-8 dbars. This might be a partial explanation for the consistent overestimation of SSS by the SBE45. The total offset of the TSG with respect to the sampled data based on the variance-weighted approach is about +0.008 PSU, which takes the pressure effect into account. **Figure 1.** Time series of underway salinity measurements. The blue line marks the TSG data (sampling interval 1 minute), while the red dots denote the sampled salinity value at the first time step after the recorded sampling time. For illustration purposes only a part of the time series is shown. **Figure 2.** Error between TSG and Salinometer plotted against salinity variance | Variance is computed over 11 TSG samples centered over the sample time. Different colored dots denote different time lags (values in minutes given in the legend). The constant least square fit results are given in the legend for each lag (w denotes a value weighted by the inverse of the variance while w/o denotes a regular least square fit). Some high error values are not shown on the current axes to better show the lower variance field. They are however included in the fit. ### **WHOI mooring** - Tom Fararr The WHOI surface buoy used in this project is equipped with meteorological instrumentation for estimation of air-sea fluxes, including two Improved Meteorological (IMET) systems. The mooring line also carries current meters, and conductivity and temperature recorders. This mooring is of an inverse-catenary design utilizing wire rope, chain, and synthetic rope and has a scope of 1.45 (scope is defined as slack length/water depth). The buoy is a 2.8-meter diameter foam buoy with an aluminum tower and rigid bridle. The watch circle is 4.2 nmi diameter. The mooring, WHOI PO mooring #1250, was deployed 14 September 2012, at 24°34.867'N, 38° 0.00'W. The water depth was 5292 m. The anchor was released from the ship at 18:38:58 UTC and was settled on the seafloor before 20:00 UTC. The anchor position was estimated by performing an 'acoustic anchor survey', pinging the acoustic releases from several positions to triangulate the anchor position. The results of this survey are summarized in Figure X1. Figure 1: Summary of anchor survey, showing locations where the release was queried and the acoustic signal travel times (STT) in seconds. Table 1: Types of measurements collected on the WHOI-SPURS air-sea interaction surface mooring. | Surface Measurements | Subsurface Measurements | |----------------------|-------------------------| | Wind speed | Temperature | | Wind direction | Conductivity | |--|-------------------| | Air temperature | Current speed | | Sea surface temperature | Current direction | | Barometric pressure | | | Relative humidity | | | Incoming shortwave radiation | | | Incoming longwave radiation | | | Precipitation | | | Surface wave height and direction (buoy pitch, roll, heave, and yaw) | | | Turbulent fluctuations of humidity, temperature, and wind | | #### **Surface Instruments** There are two independent IMET systems (Hosom et al., 1995; Payne and Anderson, 1999) on the buoy (Figures III-1 and III-2). These systems measure the following parameters once per minute, and transmit hourly averages via satellite: relative humidity with air temperature barometric pressure precipitation wind speed and direction shortwave radiation longwave radiation near-surface ocean temperature and conductivity All IMET modules are modified for lower power consumption so that a non-rechargeable alkaline battery pack can be used. Near-surface temperature and conductivity are measured with two SeaBird MicroCat instruments with RS-485 interfaces attached to the bottom of the buoy. One-hour averages of data from the IMET modules are transmitted via Service Argos. Data are also logged redundantly on flash cards within the logger/controller for each system and within each meteorological module. The 1-minute data stored on the buoy are more suitable for scientific analysis; when the buoy and mooring are recovered, we will use the data from the two redundant IMET systems, as well as data from the freshly calibrated systems on the research vessels used for deployment and recovery and post-deployment calibrations, to identify any instrument performance problems and develop a "best" time series of the surface meteorology for estimation of air-sea fluxes. However, any SPURS investigators wishing to view the data in near real time may do so by visiting http://uop.whoi.edu/projects/spurs/. In addition to the IMET measurements, the buoy also carries an instrument to measure the height and direction of surface waves (Bouchard and Farrar, 2008). This instrument was purchased from the U.S. National Data Buoy Center (NDBC) under the terms of a WHOI-NDBC Memorandum of Agreement. The processed, real-time wave data are available from the NDBC web site under Station Number 41061 Figure X2: WHOI-SPURS surface mooring after deployment. The buoy also carries two atmospheric turbulence packages for measuring turbulent sensible and latent heat fluxes and wind stress. Each of these packages, known as Direct Covariance Flux Systems (DCFS), comprise fast-response infrared hygrometers (LiCor 7200 model), Gill 3-axis sonic anemometers, and a motion package. For the IMET meteorological packages and other buoy instruments, instrument types and measurement heights are given in Table III-1, along with the instrument IDs and their associated loggers. Note that IMET logger L-37 is known as "System 1" and logger L-38 is known as "System 2", **but, with some potential for confusion**, DCFS "System 2" is attached to IMET "System 1". ### **Subsurface Instruments** The mooring line is heavily instrumented for measuring temperature, conductivity, and velocity. Figure X3 shows how the instruments are configured on the mooring. The instruments will be described in more detail elsewhere. | Parameter(s) measured | Sensor | Height above | Serial number and | |-----------------------|-----------------------------|-----------------|-------------------| | | | buoy deck (deck | logger number | | | | is ~75 cm above | | | | | sea level) | | | HRH/ATMP | Rotronic MP-101A | 237 cm | 250/L-37 | | BPR | Heise DXD (Dresser | 237.5 cm | 225/L-37 | | | Instruments) | | | | WND | RM Young | 266 cm | 221/L-37 | | PRC | RM Young 50202 Self- | 232 cm | 220/L-37 | | | siphoning rain gauge | | | | LWR | Eppley Precision Infrared | 280.5 cm | 206/L-37 | | | Radiometer (PIR) | | | | SWR | Eppley Precision Spectral | 280.5 cm | 229/L-37 | | | Pyranometer (PSP) | | | | SST/SSS | SeaBird Electronics | -150 cm | 5996/L-37 | | | SBE37-SI | | | | HRH/ATMP | Rotronic MP-101A | 231 cm | 247/L-38 | | BPR | Heise DXD (Dresser | 230 cm | 233/L-38 | | | Instruments) | | | | WND | RM Young | 266 cm | 239/L-38 | | PRC | RM Young 50202 Self- | 233 cm | 229/L-38 | | | siphoning rain gauge | | | | LWR | Eppley Precision Infrared | 280.5 cm | 503/L-38 | | | Radiometer (PIR) | | | | SWR | Eppley Precision Spectral | 280.5 cm | 223/L-38 | | | Pyranometer (PSP) | | | | SST/SSS | SeaBird Electronics | -150 cm | 5997/L-38 | | | SBE37-SI | | | | HRH/ATMP | LASCAR | 162 cm | 336/stand-alone | | PRC | Hasse | 228 cm | HAS001/stand- | | | | | alone | | ATMP | SBE 39, with external | 215 cm | 72/stand-alone | | | thermixtor and radiation | | | | | shield | | | | HRH/ATMP/PRC/WND | Vaisala WXT-520 | 258 cm | VWX003/stand- | | | | | alone | | HRH/ATMP | Rotronic MP-101A | 237 cm | 248/stand-alone | | DCFS WND | | | DCFS sys 2/L-37 | | DCFS WND | | | DCFS sys 1/L-37 | | DCFS H20 | LiCor 7200 | | DCFS sys 2/L-37 | | DCFS H20 | LiCor 7200 | | DCFS sys 1/L-38 | | | hts and sonsor types for hu | | | Table III-1: Measurement heights and sensor types for buoy measurements. The buoy deck is estimated to be 75 cm above the mean water line, so add 75 cm to height above
deck to obtain height above sea level. ## PO Mooring # 1250 BUOY WATCH CIRCLE ~ 4 N.Miles 2.7 m Surlyn Buoy with (2) IMET/Iridium Telemetry, XEOS GPS, SA AT/H, LASCAR VIASALA WXT 520, HASSE PRECIP. LICOR, DCFS, WAMDAS Bridle with (2) IMET Temp. Sensors at 0.75 m Depth, and Backup XEOS Transmitter 0.2m - 4 TR 1060 Fixed In Hull 1.3 m 2.1 m 3.0 m 4.4 m 5.2 m 6.5 m 8.0 m 11 m 12.5 m 14 m HARDWARE DESIGNATION 17 m U-Joint, 1" Chain Shackle, 20 m (A) 1" EndLink, 3/4" Chain Shackle 21.5 m 3/4" Chain Shackle, 7/8" EndLink, 23 m ◎ 3/4" Chain Shackle 3/4" Chain Shackle, 30 m (D) 3/4" Anchor Shackle 35 m 3/4" Anchor Shackle, 7/8" EndLink, 40 m (E) 3/4" Anchor Shackle 41.5 m 1" Anchor Shackle, 7/8" EndLink, (F) 50 m 5/8" Chain Shackle 55 m 5/8" Chain Shackle, 7/8" EndLink, ⊚ 60 m 5/8" Chain Shackle 61.7 m 5/8" Chain Shackle, 7/8" EndLink, 65 m \oplus 7/8" Anchor Shackle 70 m (1) 1.25" Master Link, (1) 5/8" Ch Sh. ⑴ 75 m (1) 7/8" End Link, (1) 7/8" Anc Sh 80 m 82 m 84 m 85 m 90 m 100 m 101 m HARDWARE REQUIRED 101.6 m (Includes approx. 20% Spares) 110 m 120 m 121.6 m 130 m (Includes approx. 20% Spares) (2) 1" Chain Shackles (2) 1" Anchor Shackles (2) 1" Weldless End Link (2) 1.25" Master Link (6) 7/8" Anchor Shackles (2) 7/8" Chain Shackles (110) 7/8" Weldless Links (150) 3/4" Chain Shackles (6) 3/4" Anchor Shackles (6) 5/8" Chain Shackles SBE 39 - temp- short bar, up SBE 37 - temp/cond Nortek current & SBE 39 SBE 39 - temp- short bar, up SBE 37 - temp/cond 3/4" SH, 0.53m 3/4" chain 3/4" SH SBE 39 - temp- short bar, up 3/4" SH, 0.83m 3/4" chain 3/4" SH SBE 37 - temp/cond 1.67 m 3/4" chain SBE 37 - temp/cond 3/4" SH, 0.76m 3/4" chain 3/4" SH Nortek HR current w/vane SBE 37 - temp/cond 1.68 m 3/4" chain SBE 37 - temp/cond 3/4" SH, 0.76m 3/4" chain 3/4" SH Nortek Profiler SBE 37 - temp/cond 3/4" SH, 0.76m 3/4" chain 3/4" SH Nortek HR current w/vane SBE 37 - temp/cond - clamped 18.35 m 7/16" wire rope Mark from top: At term "23m" At 2.2 m "25m" At 7.2 m "30m" At 12.2 m "35m" At 17.2 m "40m" SBE 37 — temp/cond — clamped URI Sampler — clamped SBE 37 IM — temp/cond clamped SBE 37 - temp/cond - clamped SBE 37 - temp/cond - clamped Nortek HR current w/vane 1.95 m 3/4" chain Nortek CM & SBE 16 SBE 37 - temp/cond - clamped 15 m 7/16" wire rope Mark from top: At 3.75 m "50m" At 8.75 m "55m" SBE 37 IM - temp/cond clamped SBE 37 - temp/cond clamped At 13.75 m "60m" Nortek HR current w/vane 11.5 m 7/16" wire rope SBE 37 IM - temp/cond clamped Mark from top: At 2 m "65m" At 7 m "70m" SBE 37 - temp/cond clamped 300 kHz ADCP in cage SBE 37 clamped to cage 3.15 m 3/4" chain .75 m 3/4" chain SBE 16 - temp/cond Nortek HR current w/vane 18 m 7/16" wire rope URI Sampler — clamped SBE 37 — temp/cond clamped Mark from top: At 1.7 m "85m" At 6.7 m "90m" At 16.7 m "100m" SBE 37 — temp/cond clamped Nortek Profiler — clamped SBE 37 - temp/cond clamped below nortek Nortek HR current w/vane 16.5 m 7/16" wire rope XR 420 temp/cond clamped Mark from top: At 7 m "110m" 0.5 m 3/4" chain SBE 16 - temp/cond Nortek HR current w/vane 16.75 m <u>7/16" wire r</u>ope XR 420 temp/cond clamped Mark from top: At 7.25 m "130m" SBE 16 - temp/cond 3.66 m 3/4" chain 300 kHz ADCP in cage 33 m 7/16" wire rope Mark from top: At 3.6 m "150m" At 13.6 m "160m" At 23.6 m "170m" XR 420 temp/cond clamped SBE 37 - temp/cond clamped XR 420 temp/cond clamped SBE 16 - temp/cond 19 m 7/16" wire rope XR 420 temp/cond clamped Mark from top: At 9.0 m "190m" SBE 16 - temp/cond 93 m 3/8"" wire rope SBE 37 IM — temp/cond clamped URI Sampler — clamped Mark from top: At 48.5 m "250m" 150 kHz ADCP in cage continued on sheet two # SPURS MOORING 140 m 145 m 150 m 160 m 170 m 180 m 190 m 200.5 m 250 m 251 m V13- Sheet 1 of 2 Figure X3 (continued from previous page): Diagram of WHOI-SPURS mooring, showing mooring design and subsurface instrumentation. ## PMEL Moorings -John Shanley, Andrew Meyer Anchor locations: The North mooring anchor position is 24 44.464 N 37 56.424 W The East mooring anchor position is 24 30.968 N 37.48.234W The Prawler instrument on the NOAA moorings will make 5-30 profiles per day, the average is about 20 profiles per day. Prawler: The Prawler (Profiler + Crawler) is a wave-powered subsea instrument that eliminates the need for multiple sensors on the mooring line. During descent, it makes a CTD profile and communicates those via inductive modem to the surface buoy. Once reaching the pre-determined bottom depth (~500m) a micro-processor activates a ratcheting mechanism and harnesses the wave motion to crawl up the mooring line. Figure 2.a. (left) Surfae float for Prawler mooring. Figure 2.b. (right) Prawler unit on jacketed cable. It contains the CTD, inductive modem and ratchetting mechanism. Figure 3. Potential temperature and salinity against depth for an early profile from the Prawler East mooring. The right panel shows the Temperature – Salinity relationship ### Hydrography: Ship CTD Operations -Chris Rea SPURS ship-based CTD operations were undertaken in a series of components as follows: - Initial test casts were made to familiarize participants with the vessels CTD equipment and SOP for CTD operations, and to establish a sampling routine. On the first cast all 23 bottles on the rosette were tripped at 1000 m, providing an initial check for salinity sampling and the salinometer analyses. - A full depth CTD cast was made near the proposed site of the WHOI mooring to calibrate the vessel's depth sounders (Sea-Beam and Knudsen) for determining the WHOI deployment depth. A 2000 m cast for comparison with the mooring instruments was made after the mooring deployment. - A series of 300 m casts were made at glider deployments. This was the nominal depth of the initial glider descent. - A control volume was sampled over a week where CTD casts to 1000 m were made to characterize the variability around the mooring sites. A 'radiator', or 'butterfly', grid of stations was occupied around the mooring positions, followed by more circuits of the control volume stations. - A high salinity spot was chosen and a series of hourly CTD casts was made while the vessel held station in the same spot by dynamic positioning for eighteen hours. - A large-scale survey of 24 stations was conducted to characterize a surface high salinity feature to the north-west and through the study area. The *Knorr* s on-board Sea-Bird SBE 9/11 CTD and 24-bottle rosette sampler were used on the cruise. An independently recording LADCP was attached to the rosette. Twenty-three 10 L Niskin bottles were mounted on the rosette; position 15 on the rosette was reserved for mounting the LADCP (Section ?). After the full depth and first 2000 m casts, the number of samples required per cast was reduced, and twenty-three bottles on the rosette was deemed excessive for rapid turn-around of the rosette between stations. The outer ring of eleven Niskin bottles was removed from the rosette for cast number 12 and thereafter. ### **Data Processing** All ship CTD data were processed with the Seasoft software from Sea-Bird Electronics. The vessel's data collection system used Seasave Version 7.21k. The CTD configuration, sensor serial numbers and calibration constants used during the cruise are tabled in the Appendix. Data processing was done using SBE Data Processing Version 7.22.0. Files were created containing the complete 24 Hz data converted to ASCII and engineering units. Data were reduced to 1 m bins using the following sequence of modules from the SBE Data Processing suite: - 1. datcnv: convert current and voltage values to engineering units. The first valid good data scan was identified and scans prior to this were excluded from further processing. - 2. bottlesum: determine parameter values at bottle trip positions. - 3. alignetd: compensate for the different positions of temperature, conductivity and oxygen sensors in the pumped flow through the TC duct, and differences in time constant of the sensors. - 4. wildedit: remove extreme wild points. - 5. celltm: compensate for conductivity cell thermal mass. - 6. filter: filter spikes. - 7. loopedit: remove pressure reversals. - 8. derive: derive dependent variable oxygen. - 9. binavg: average into 1 m depth bins. - 10. derive: derive dependent variable salinity. - 11. split: split into down and up casts. For the use of LADCP group, additional files providing 1 s binned data were produced, using the dateny, wildedit, celltm, filter, binavg time, derive salinity, and derive depth modules. File types, indicated by file extensions, produced during data collection were: - .bl: Information about bottle trips - .con: ASCII configuration files - .hdr: Header file - .hex: Raw binary data - .nav: NMEA positions and times at mark events - .xmlcon: Configuration information Files types produced during data processing were: - .btl: Final bottle data file - .cdn: Final 1 m binned downcast - .cnv: Final 1 m binned data, both up and down casts - .cup: Final 1 m binned up cast - .hdr: Header file - .ros: Scan numbers during bottle trip events - .xmlcon: Configuration information for the cast ### **CTD Sampling Protocol** The following abbreviated sampling protocol was observed on the cruise. - 1. Bottles were cocked in the hangar no more than 15 min prior to on-station. - 2. The LADCP data collection was started and the LADCP data download and recharge cable was disconnected. - 3. The CTD was moved out on deck. - 4. Taps closed and caps open (top and bottom) were checked. - 5. Soaking tubes were removed. - 6. CTD powered on and logging started. - 7. CTD deployed over the side. - 8. CTD down to 10 m to ensure exclusion of air bubbles from the TC-duct and for the conductivity sensors to equilibrate to ocean temperature. - 9. The CTD brought back to the surface, the winch wire-out meter zeroed and the cast proper begun. - 10. Choosing bottle depths: - (a) Bottom of cast. - (b) Within surface mixed layer (usu. about 30m). - (c) Thick stads (isohaline and isothermal layers $> \sim 20$
m). - (d) Smax and Smin, however, avoid maxima and minima in very thin layers. - (e) Standard depths, choosing from 1000, 900, 800, 750, 700, 600, 500, 400, 300, 250, 200, 150, 100, 75. Space bottles evenly, but switch them around from cast to cast to get a good coverage over the range of salinities. Allow 45 to 60 s soak before bottle trips. Avoid strong thermoclines or haloclines. These often also occur around thin local maxima and minima. Clines are intensified around thin stads, so avoid them. Any movement of the sensors or bottles into surrounding clines will increase the variability between bottle samples and CTD readings. - 11. After the cast and the CTD back on deck, the data collection was terminated and power to the underwater unit turned off. - 12. CTD returned to the hangar. - 13. TC duct tubes attached and filled with deionized water. - 14. Salt samples were taken. - 15. The trigger unit and LADCP were rinsed with freshwater. #### **CTD Calibration** Sensors on the CTD were freshly calibrated before the Line W cruise, immediately prior to SPURS. This was considered sufficiently recent and those calibration coefficients were accepted for this cruise. Samples were taken from the rosette to check the calibration of the conductivity sensors. These samples were analyzed on a Guildline Salinometer 8400-B in the laboratory at sea (See Section?). To monitor the sensors' response and drift during the cruise, the conductivity delta between the two sensors was observed. During the cruise the difference between the two sensors remained constant (see Figures). The difference between salinity determinations and sensor salinities was also monitored and found to remain constant during the cruise within the confidence interval. The primary sensor was found to be closest to the salinometer salinity values (Figure 1) and was thereafter used to provide salinity values. Some of the variability appeared to be related to the samplers or operators on watch. This was addressed by emphasizing standardized sampling techniques and consistent choice of sampling depths. Improvement in later stations was observed. It should be noted that errors and differences in salinity determinations were within WOCE standards. Since the conductivity measurement and salinity calculation is temperature dependent, the response of the temperature sensors was monitored by observing the difference between the primary and secondary temperature channels on the CTD. This difference was not distinguishable from zero ($\Delta T = 1.4 \pm 3 \times 10 - 4$ at bottle depths) given the accuracy of the sensors (0.001° C), and no significant trend was observed during the cruise (T1 = 0.99997T2 +0.00032). Oxygen titrations were not done on the cruise, and no calibration checks could be done. Fluorometer and turbidimeter readings were also collected without calibration checks. **Figure 1:** (Top) Difference between salinity from the primary and secondary conductivity channels of the CTD, plotted against station number. (Bottom) Difference between salinity from the primary conductivity channel and the salinometer, plotted against station number. In each case, the dashed lines indicate one standard deviation from the mean at each station. The dot-dashed line indicates the mean of all differences. The solid line is a regression line indicating the trend over all differences. Data points are color coded with the watch on which the samples were taken. **Figure 2:** Variability indicated by box-and-whisker plots of the difference between salinity derived from the primary conductivity channel and the salinometer samples, grouped by the watch sampling the Niskin bottles. The variances of the samples drawn by the 12–4 and 8–12 watches are not significantly different; the variances of the samples drawn by the 4–8 watch are significantly different from both the other two watches (95%). The variability in the sampling was addressed by emphasizing the sampling procedure and choice of bottle depths. There was subsequent improvement in the variability in salinity difference between CTD and bottle samples. **Figure 3:** The regression between CTD salinity and salinometer values from Niskin samples for primary and secondary sensors. **Figure 4:** Difference between salinity from Niskin samples and primary conductivity sensor salinities plotted against Niskin bottle number. No consistently leaking Niskin bottles were observed. **Figure 5:** Difference between salinity from Niskin samples and primary conductivity sensor salinities plotted against pressure. #### **CTD Stations** The CTD casts with times, positions, depths and samples are listed in Tables in the Appendix. Stations 1 and 2 were test casts. All bottles were tripped at 1000 m on Station 1 to provide a check for salinity sampling and the salinometer. Two of the underway CTD probes were attached to the rosette at Station 1 in an attempt to calibrate the probes against the CTD profile. This was not successful because of the difference in optimal descent rates of the UCTD and CTD, and turbulence and interference created by the rosette. The free descent rate of the UCTD probe is 4 m·s-1 while the descent rate of the CTD rosette is ≤ 1.0 m·s-1. The resulting excessive spiking in the UCTD record rendered it essentially unusable. Station 3 was a full depth cast done to check the offset of the Knudsen 12 kHz echo sounder. It was found that the bathymetric depth calculated from the CTD pressure and rosette altimeter reading was within 1 m of the reading from the echo sounder. After Station 11, eleven bottles were removed from the rosette because relatively few salinity samples were required for checking the drift of the conductivity sensors. On Station 15 the 'fire' button on the deck unit was used to trigger some bottles instead of using the interrupt in software, causing the bottles to close out of sequence. This did not affect any of the bottles required for salinity samples, which had already been correctly closed. At Station 16, during flat calm conditions, a UCTD probe was lowered into the surface while on CTD station in an attempt to sample the surface layer, unreliably sampled by the CTD on the rosette Some variability had been noticed in the Salinometer versus CTD readings, and during Station 21 additional bottle samples were taken at 1000 m to investigate this variability. After some overnight rainfall, air bubbles in the TC ducts created the impression of very low surface salinities in the CTD data at Station 38. Additional bucket salinity samples were taken before the problem was finally diagnosed. The TC ducts were back-flushed with fresh water and the air-release valves in the TC ducts reamed out. There was a recurrence of the problem on the following cast, Station 39, and the back-flushing was repeated, this time with success. On Station 40 heavy rainfall began as the CTD was being recovered after the cast, which may have affected salinity sampling as a possible source of fresh water to dilute samples. On Station 46, the underwater unit power was turned on after the CTD was already in the water. There were no pre-cast air data obtained for this station. On Station 50, a tangled line required recovery of the rosette before redeployment. On Station 55, another air bubble problem occurred which was cleared by descending to 30 m before returning to the surface to begin the cast. The TC ducts were again back-flushed after this station. During the 18-hour stations (Casts 52–70), a UCTD probe was mounted on the rosette at Stations 52–57 and 60–65. The UCTD probe was mounted with the sensors pointing up, and the rosette was raised through the surface then lowered again for a final bottle sample before recovery in an attempt to sample the surface layer, a feat which is difficult with the usual configuration of the rosette-mounted CTD. Some large spikes were observed on Stations 65 and 66. The cause was diagnosed as looping (pressure reversals) of the CTD rosette during ship rolls. The Seasave software failed to connect to the NMEA string during Station 67 and data collection was restarted while the CTD package was already in the water. Pre-cast air data for this cast was lost. After this cast the CTD data-capture computer was rebooted and a new instance of Seasave was started. After Station 72 some doubts were expressed about apparent corrosion affecting the integrity of the conducting cable and termination of the CTD, and the chinese finger termination was replaced. #### Data The data are available in the directories data_on_memory/ctd (raw data) and science_on_memory/processed_ctd (processed data). Station log sheets have been scanned and are in science_on_memory/processed_ctd/logsheets/ctdlogsheets.pdf. Salinity sample sheets are scanned in science_on_memory/Salinometer/logsheets/salinometerlogsheets.pdf. Data from the CTD casts taken near the mooring sites and on the dynamic positioning stations are shown in the following figures. Figure 6: CTD casts obtained during the 18-hour dynamic positioning stations. Figure 7: CTD casts obtained in the vicinity of the PICO-E mooring. Figure 8: CTD casts obtained in the vicinity of the PICO-N mooring. Figure 9: CTD casts obtained in the vicinity of the WHOI mooring. ### Appendix PSA file: C:\Users\tomf\Application Data\Sea-Bird\Seasave\Seasave.psa Date: 10/02/2012 Instrument configuration file: C:\data\Cruise\KN209\raw\KN209_01_001.XMLCON Configuration report for SBE 911plus/917plus CTD ----- $\begin{array}{ll} Frequency \ channels \ suppressed: 0 \\ Voltage \ words \ suppressed & : 0 \\ Computer \ interface & : RS-232C \end{array}$ Deck unit : SBE11plus Firmware Version >= 5.0 Scans to average : 1 NMEA position data added : Yes NMEA depth data added : No NMEA time added : No NMEA device connected to : deck unit Surface PAR voltage added : Yes Scan time added : No #### 1) Frequency 0, Temperature Serial number: 4360 Calibrated on: 17-Feb-12 G: 4.36270311e-003 H:
6.49904712e-004 I: 2.31365566e-005 J: 1.86535914e-006 F0: 1000.000 Slope: 1.00000000 Offset: 0.0000 #### 2) Frequency 1, Conductivity Serial number: 3042 Calibrated on: 17-Feb-12 : -1.06511827e+001 G Η : 1.45091541e+000 : -7.64624338e-005 : 8.07436667e-005 CTcor : 3.2500e-006 **CPcor** : -9.57000000e-008 : 1.00000000 Slope Offset : 0.00000 #### 3) Frequency 2, Pressure, Digiquartz with TC Serial number: 0462 Calibrated on: 15-Mar-12 : -4.872453e+004 C2 : 2.143123e-002 C3 : 1.347220e-002 : 3.959500e-002 D1 : 0.000000e+000 D2: 2.994567e+001 T1 T2 : -2.488396e-004 : 3.985300e-006 T3 T4 : 7.998620e-010 T5 : 0.000000e+000 Slope : 0.99988587 : -1.74580 Offset AD590M : 1.282050e-002 AD590B : -9.111540e+000 4) Frequency 3, Temperature, 2 Serial number: 2774 Calibrated on: 08-Mar-12 G : 4.32562685e-003 H : 6.47085041e-004 I : 2.42677157e-005 J : 2.50146798e-006 F0 : 1000.000 Slope : 1.00000000 Offset : 0.0000 #### 5) Frequency 4, Conductivity, 2 Serial number: 3089 Calibrated on: 09-Mar-12 : -1.03616200e+001 : 1.39324960e+000 Η I : 2.45586836e-004 : 4.42430584e-005 CTcor : 3.2500e-006 CPcor : -9.57000000e-008 : 1.00000000 Slope Offset : 0.00000 #### 6) A/D voltage 0, Fluorometer, WET Labs ECO-AFL/FL Serial number : FLNTURTD-304 Calibrated on : 2008-03-10 Dark output : 0.0710 Scale factor: 1.00000000e+001 #### 7) A/D voltage 1, Turbidity Meter, WET Labs, ECO-NTU Serial number: FLNTURTD-304 Calibrated on: 20080310 ScaleFactor: 5.000000 Dark output: 0.048000 #### 8) A/D voltage 2, Transmissometer, WET Labs C-Star Serial number: CST-1117DR Calibrated on: 2008-04-30 M: 21.7014 B:-1.3672 Path length: 0.250 9) A/D voltage 3, Free #### 10) A/D voltage 4, Altimeter Serial number: 1192 Calibrated on: Scale factor: 15.000 Offset: 0.000 #### 11) A/D voltage 5, Oxygen, SBE 43 Serial number: 0113 Calibrated on: 11-Feb-12 Equation : Sea-Bird : 3.62900e-001 Soc Offset : -5.83700e-001 : -3.07280e-003 A В : 1.94560e-004 C : -2.91830e-006 Е : 3.60000e-002 Tau20 : 1.19000e+000 D1 : 1.92634e-004 : -4.64803e-002 D2 H1 : -3.30000e-002 : 5.00000e+003 H2 ``` Н3 : 1.45000e+003 12) A/D voltage 6, Free 13) A/D voltage 7, Free 14) SPAR voltage, Unavailable 15) SPAR voltage, SPAR/Surface Irradiance Serial number Calibrated on Conversion factor: 0.00000000 Ratio multiplier: 0.00000000 Scan length : 40 Pump Control This setting is only applicable to a custom build of the SBE 9plus. Enable pump on / pump off commands: NO Data Acquisition: Archive data: YES Delay archiving: Data archive: <none selected> Timeout (seconds) at startup: 60 Timeout (seconds) between scans: 10 Instrument port configuration: Port = COM1 Baud rate = 9600 Parity = N Data bits = 8 Stop bits = 1 Water Sampler Data: Water Sampler Type: None Header information: Header Choice = Prompt for Header Information prompt 0 = Ship: prompt 1 = Station: prompt 2 = Operator: TCP/IP - port numbers: Data acquisition: Data port: 49163 Status port: 49165 Command port: 49164 Remote bottle firing: Command port: 49168 Status port: Remote data publishing: Converted data port: 49161 Raw data port: 49160 Miscellaneous data for calculations Depth and Average Sound Velocity Latitude when NMEA is not available: 0.00000000 Average Sound Velocity Minimum pressure [db]: 20.00000000 Minimum salinity [psu]: 20.00000000 Pressure window size [db]: 20.00000000 Time window size [s]: 60.00000000 Descent and Acceleration Window size [s]: 2.00000000 Plume Anomaly 0.00000000 Theta-B: Salinity-B 0.00000000 ``` Theta-Z / Salinity-Z 0.00000000 0.00000000Reference pressure [db] Oxygen Window size [s]: 2.00000000Apply hysteresis correction: Apply Tau correction: Potential Temperature Anomaly 0.000000000.00000000 A1: A1 Multiplier: Salinity Serial Data Output: Output data to serial port: NO Mark Variables: Variables: Digits Variable Name [units] 0 Scan Count Depth [salt water, m] 4 Conductivity [S/m] 5 Salinity, Practical [PSU] Shared File Output: Output data to shared file: NO TCP/IP Output: Raw data: Output raw data to socket: NO XML wrapper and settings: NO Seconds between raw data updates: 0.00000000 Converted data: Output converted data to socket: NO XML format: NO SBE 11plus Deck Unit Alarms Enable minimum pressure alarm: NO Enable maximum pressure alarm: NO Enable altimeter alarm: SBE 14 Remote Display Enable SBE 14 Remote Display: NO PC Alarms Enable minimum pressure alarm: NO Enable maximum pressure alarm: NO Enable altimeter alarm: Enable bottom contact alarm: NO Alarm uses PC sound card. Options: Prompt to save program setup changes: YES Automatically save program setup changes on exit: NO Confirm instrument configuration change: YES Confirm display setup changes: YES Confirm output file overwrite: YES Check scan length: NO Compare serial numbers: NO Maximized plot may cover Seasave: NO Table 1: All CTD stations occupied on SPURS-1 cruise | CTD Station | Start Date
Time | Start Lat | Start Long | End Date Time | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle Samples | |-------------|-------------------------|-----------|------------|-------------------------|----------|-----------|-------------|----------|------------|----------------| | 1 | Sep 10 2012
17:51:54 | 31.33870 | -48.83368 | Sep 10 2012
18:39:19 | 31.33682 | -48.83818 | 5573 | 50 | 1009 | 23 | | 2 | Sep 11 2012
13:06:06 | 29.11952 | -45.45027 | Sep 11 2012
14:52:52 | 29.12198 | -45.44772 | 3809 | 111 | 1997 | 23 | | 3 | Sep 13 2012
09:24:16 | 24.56580 | -38.03152 | Sep 13 2012
12:53:02 | 24.58340 | -38.03873 | 4902 | 210 | 4911 | 16 | | 4 | Sep 13 2012
19:33:29 | 24.57297 | -38.03832 | Sep 13 2012
20:06:23 | 24.57307 | -38.03830 | 4885 | 35 | 349 | 4 | | 5 | Sep 14 2012
23:02:54 | 24.49750 | -38.00030 | Sep 15 2012
00:27:29 | 24.49663 | -38.00157 | 5508 | 88 | 2025 | 7 | | 6 | Sep 16 2012
17:18:35 | 24.57997 | -38.06238 | Sep 16 2012
17:48:07 | 24.57997 | -38.06240 | 4628 | 31 | 319 | 5 | | 7 | Sep 16 2012
19:14:02 | 24.58088 | -38.05607 | Sep 16 2012
19:59:44 | 24.58387 | -38.04880 | 4663 | 46 | 348 | 6 | | 8 | Sep 18 2012
05:06:43 | 24.59208 | -37.96752 | Sep 18 2012
06:03:56 | 24.59673 | -37.96470 | 5103 | 58 | 1000 | 12 | | 9 | Sep 18 2012
19:54:45 | 24.55072 | -38.03337 | Sep 18 2012
20:50:07 | 24.54730 | -38.03768 | 5074 | 57 | 1037 | 6 | | 10 | Sep 19 2012
01:38:50 | 24.78287 | -37.91667 | Sep 19 2012
02:30:57 | 24.78287 | -37.91923 | 5330 | 53 | 1037 | 7 | | 11 | Sep 19 2012
08:14:26 | 24.48333 | -37.76668 | Sep 19 2012
09:08:34 | 24.48307 | -37.76773 | 5830 | 54 | 1037 | 7 | | 12 | Sep 19 2012
13:25:01 | 24.54990 | -38.03283 | Sep 19 2012
14:16:51 | 24.54773 | -38.03520 | 5113 | 53 | 1037 | 7 | | 13 | Sep 19 2012
18:59:51 | 24.78182 | -37.91760 | Sep 19 2012
19:53:37 | 24.77878 | -37.91813 | 5462 | 56 | 1018 | 7 | | 14 | Sep 20 2012
01:33:58 | 24.48287 | -37.76740 | Sep 20 2012
02:27:07 | 24.48153 | -37.76860 | 5769 | 55 | 1037 | 7 | | 15 | Sep 20 2012
07:05:08 | 24.55033 | -38.03312 | Sep 20 2012
08:07:44 | 24.54892 | -38.03450 | 5110 | 63 | 1021 | 8 | | 16 | Sep 20 2012
12:27:38 | 24.78392 | -37.91688 | Sep 20 2012
13:20:37 | 24.78680 | -37.92140 | 5446 | 53 | 1039 | 7 | | 17 | Sep 20 2012
19:54:59 | 24.48300 | -37.76760 | Sep 20 2012
20:53:50 | 24.48180 | -37.76748 | 5779 | 59 | 1018 | 8 | | 18 | Sep 21 2012
01:10:31 | 24.54973 | -38.03287 | Sep 21 2012
02:03:06 | 24.54983 | -38.03382 | 5033 | 53 | 1038 | 7 | | 19 | Sep 21 2012
06:09:18 | 24.78318 | -37.91780 | Sep 21 2012
06:59:10 | 24.78168 | -37.91817 | 5319 | 51 | 1008 | 7 | | 20 | Sep 21 2012
14:01:45 | 24.48342 | -37.76773 | Sep 21 2012
14:53:02 | 24.48202 | -37.76857 | 5771 | 53 | 1039 | 7 | | 21 | Sep 21 2012
19:24:00 | 24.54997 | -38.03278 | Sep 21 2012
20:24:41 | 24.54847 | -38.03277 | 5104 | 62 | 1018 | 12 | | 22 | Sep 22 2012
00:50:28 | 24.78292 | -37.91813 | Sep 22 2012
01:43:22 | 24.78013 | -37.91842 | 5339 | 54 | 1038 | 7 | | 23 | Sep 22 2012
10:02:22 | 25.24797 | -37.00202 | Sep 22 2012
10:58:02 | 25.24692 | -37.00152 | 5915 | 57 | 1020 | 6 | | 24 | Sep 22 2012
14:25:54 | 24.74988 | -37.00150 | Sep 22 2012
15:19:26 | 24.74787 | -37.00388 | 5645 | 54 | 1039 | 7 | | 25 | Sep 22 2012
19:29:12 | 24.24253 | -37.00190 | Sep 22 2012
20:25:29 | 24.24100 | -37.00233 | 5468 | 56 | 1020 | 7 | | 26 | Sep 22 2012
23:54:29 | 23.75008 | -37.00267 | Sep 23 2012
00:45:52 | 23.74843 | -37.00503 | 5594 | 53 | 1038 | 7 | | 27 | Sep 23 2012
04:12:52 | 23.74988 | -37.50033 | Sep 23 2012
05:04:41 | 23.74880 | -37.50048 | 5795 | 51 | 1040 | 7 | | 28 | Sep 23 2012
08:25:02 | 23.75023 | -38.00128 | Sep 23 2012
09:23:42 | 23.75007 | -38.00248 | 5730 | 60 | 1020 | 7 | | 29 | Sep 23 2012
13:09:17 | 24.25067 | -38.00140 | Sep 23 2012
13:59:09 | 24.24940 | -38.00372 | 5764 | 51 | 1039 | 7 | | 30 | Sep 23 2012
17:46:25 | 24.75222 | -38.00538 | Sep 23 2012
18:39:08 | 24.75373 | -38.00680 | 5460 | 55 | 1039 | 7 | | 31 | Sep 23 2012
22:28:06 | 25.25038 | -38.00123 | Sep 23 2012
23:17:57 | 25.25202 | -38.00382 | 5086 | 49 | 1020 | 6 | | 32 | Sep 24 2012
02:43:46 | 25.25043 | -38.49997 | Sep 24 2012
03:35:16 | 25.25270 | -38.50162 | 5337 | 52 | 1039 | 7 | | 33 | Sep 24 2012
06:31:25 | 25.25007 | -38.99993 | Sep 24 2012
07:24:22 | 25.24973 | -38.99998 | 5083 | 53 | 1041 | 6 | | 34 | Sep 24 2012
10:35:47 | 24.75610 | -39.00208 | Sep 24 2012
11:31:44 | 24.75502 | -39.00313 | 5195 | 57 | 1019 | 7 | | 35 | Sep 24 2012
15:06:59 | 24.24908 | -39.00230 | Sep 24 2012
15:59:46 | 24.24813 | -39.00330 | 5070 | 53 | 1042 | 7 | | 36 | Sep 24 2012
19:32:02 | 23.75353 | -39.00132 | Sep 24 2012
20:27:34 | 23.75202 | -39.00290 | 5550 | 56 | 1019 | 7 | | 37 | Sep 24 2012
23:44:29 | 23.74970 | -38.50147 | Sep 25 2012
00:35:27 | 23.74800 | -38.50547 | 5585 | 52 | 1037 | 7 | | 38 | Sep 25 2012 | 24.78340 | -37.91540 | Sep 25 2012 | 24.78340 | -37.91540 | 5287 | 102 | 2025 | 12 | | 39 |
11:21:58
Sep 25 2012 | 24.48453 | -37.76872 | 13:03:51
Sep 25 2012 | 24.48457 | -37.76877 | 4395 | 64 | 1019 | 6 | |-----|-------------------------------------|----------|-----------|-------------------------|----------|-----------|------|----|-------|---| | 40 | 18:05:44
Sep 25 2012 | 24.55027 | -38.03343 | 19:10:13
Sep 25 2012 | 24.55018 | -38.03342 | 5081 | 55 | 1041 | 7 | | 41 | 23:03:09
Sep 26 2012 | 24.78550 | -37.91622 | 23:57:24
Sep 26 2012 | 24.78658 | -37.91740 | 5390 | 57 | 1038 | 7 | | 42 | 03:56:18
Sep 26 2012 | 24.48363 | -37.76503 | 04:53:20
Sep 26 2012 | 24.48377 | -37.76502 | 5770 | 57 | 1038 | 7 | | 43 | 10:15:21
Sep 26 2012 | 24.54787 | -38.03240 | 11:11:48
Sep 26 2012 | 24.54777 | -38.03447 | 5128 | 61 | 1038 | 7 | | 44 | 16:38:45
Sep 26 2012 | 24.55060 | -38.03290 | 17:37:35
Sep 26 2012 | 24.55340 | -38.03520 | 5051 | 56 | 1039 | 6 | | 45 | 18:00:56
Sep 26 2012 | 24.78323 | -37.91738 | 18:56:11
Sep 27 2012 | 24.78218 | -37.91837 | 5344 | 54 | 1039 | 6 | | 46 | 23:07:53
Sep 27 2012 | 24.48403 | -37.76773 | 00:01:34
Sep 27 2012 | 24.48280 | -37.76987 | 5728 | 56 | 1039 | 7 | | 47 | 05:27:29
Sep 27 2012 | 24.55120 | -38.03403 | 06:23:32
Sep 27 2012 | 24.54950 | -38.03473 | 5098 | 56 | 1039 | 6 | | 48 | 10:32:11
Sep 27 2012 | 24.78207 | -37.91832 | 11:26:52
Sep 27 2012 | 24.78077 | -37.91897 | 5461 | 57 | 1039 | 7 | | 49 | 15:37:44
Sep 27 2012 | 24.48308 | -37.76717 | 16:35:17
Sep 27 2012 | 24.48192 | -37.76858 | 5777 | 55 | 1019 | 6 | | 50 | 21:51:34
Sep 28 2012 | | -38.03377 | 22:45:23
Sep 28 2012 | 24.54992 | -38.03420 | 5103 | 64 | 1036 | 7 | | | 03:00:08 | 24.55100 | | 04:03:54 | | | | | | | | 51 | Sep 28 2012
08:03:21 | 24.78298 | -37.91867 | Sep 28 2012
09:01:29 | 24.78320 | -37.91983 | 5461 | 59 | 1019 | 8 | | 52 | Sep 29 2012
07:03:42 | 25.50000 | -38.49990 | Sep 29 2012
07:34:33 | 25.50000 | -38.50007 | 5252 | 29 | 502 | 2 | | 53 | Sep 29 2012
08:08:56 | 25.49998 | -38.50003 | Sep 29 2012
08:36:19 | 25.49998 | -38.50007 | 4992 | 26 | 501 | 2 | | 54 | Sep 29 2012
09:04:33 | 25.50000 | -38.50007 | Sep 29 2012
09:32:07 | 25.50000 | -38.50007 | 4989 | 27 | 501 | 2 | | 55 | Sep 29 2012
10:04:53 | 25.50000 | -38.50003 | Sep 29 2012
10:37:31 | 25.49998 | -38.50007 | 4991 | 31 | 507 | 2 | | 56 | Sep 29 2012
11:02:25 | 25.49998 | -38.50007 | Sep 29 2012
11:29:37 | 25.50008 | -38.49937 | 4985 | 26 | 506 | 2 | | 57 | Sep 29 2012
12:04:24 | 25.49998 | -38.49998 | Sep 29 2012
12:33:41 | 25.49997 | -38.50007 | 4986 | 29 | 506 | 2 | | 58 | Sep 29 2012
12:58:04 | 25.50003 | -38.49988 | Sep 29 2012
13:30:32 | 25.49998 | -38.50003 | 4982 | 29 | 507 | 2 | | 59 | Sep 29 2012
14:00:31 | 25.49997 | -38.50003 | Sep 29 2012
14:26:59 | 25.49998 | -38.50007 | 4987 | 27 | 497 | 2 | | 60 | Sep 29 2012
15:07:48 | 25.49997 | -38.50003 | Sep 29 2012
15:35:06 | 25.49997 | -38.50003 | 4982 | 25 | 497 | 2 | | 61 | Sep 29 2012
16:01:46 | 25.49997 | -38.50003 | Sep 29 2012
16:29:22 | 25.49997 | -38.50003 | 4982 | 25 | 497 | 2 | | 62 | Sep 29 2012
17:02:22 | 25.49997 | -38.50007 | Sep 29 2012
17:28:55 | 25.49997 | -38.50003 | 4981 | 25 | 497 | 2 | | 63 | Sep 29 2012
18:03:38 | 25.49998 | -38.50007 | Sep 29 2012
18:32:14 | 25.49998 | -38.50003 | 4990 | 28 | 502 | 2 | | 64 | Sep 29 2012
19:02:59 | 25.49997 | -38.50007 | Sep 29 2012
19:30:47 | 25.49997 | -38.50007 | 4993 | 26 | 500 | 2 | | 65 | Sep 29 2012 | 25.49997 | -38.50003 | Sep 29 2012 | 25.49997 | -38.50007 | 4982 | 26 | 506 | 2 | | 66 | 20:02:33
Sep 29 2012
21:02:57 | 25.49998 | -38.50003 | 20:30:02
Sep 29 2012 | 25.49997 | -38.50007 | 4989 | 31 | 506 | 2 | | 67 | Sep 29 2012 | 25.49997 | -38.50007 | 21:33:22
Sep 29 2012 | 25.49997 | -38.50003 | 4981 | 32 | 506 | 2 | | 68 | 22:04:34
Sep 29 2012 | 25.49997 | -38.50003 | 22:34:20
Sep 29 2012 | 25.49997 | -38.50007 | 4998 | 31 | 506 | 2 | | 69 | 23:01:53
Sep 30 2012 | 25.49997 | -38.50003 | 23:32:17
Sep 30 2012 | 25.49997 | -38.50007 | 4988 | 31 | 506 | 2 | | 70 | 00:01:20
Sep 30 2012 | 25.49997 | -38.50007 | 00:31:58
Sep 30 2012 | 25.49998 | -38.50003 | 4989 | 31 | 506 | 2 | | 71 | 00:58:07
Sep 30 2012 | 25.45777 | -39.15338 | 01:28:15
Sep 30 2012 | 25.45810 | -39.15570 | 4969 | 54 | 1018 | 6 | | 72 | 07:28:53
Sep 30 2012 | 25.80352 | -38.74832 | 08:21:32
Sep 30 2012 | 25.80377 | -38.74858 | 5023 | 53 | 1039 | 6 | | 73 | 11:35:52
Sep 30 2012 | 26.15033 | -38.33742 | 12:27:42
Sep 30 2012 | 26.15198 | -38.34318 | 5271 | 54 | 1036 | 6 | | 74 | 15:58:51
Sep 30 2012 | 25.92612 | -38.11010 | 16:52:08
Sep 30 2012 | 25.92717 | -38.11923 | 4626 | 55 | 1011 | 6 | | 75 | 19:33:27
Oct 01 2012 | 25.58387 | -38.50393 | 20:28:17
Oct 01 2012 | 25.58787 | -38.50523 | 4804 | 57 | 1039 | 6 | | 76 | 01:06:33
Oct 01 2012 | 25.23873 | -38.91672 | 02:02:37
Oct 01 2012 | 25.24412 | -38.92052 | 4536 | 53 | 1036 | 7 | | 77 | 05:15:13
Oct 01 2012 | 25.02218 | -38.67987 | 06:07:59
Oct 01 2012 | 25.03188 | -38.68077 | 5211 | 53 | 1003 | 7 | | 78 | 08:07:16
Oct 01 2012 | 25.36330 | -38.28537 | 08:59:52
Oct 01 2012 | 25.36600 | -38.28678 | 5104 | 54 | 1040 | 5 | | , 0 | 00.01 2012 | 20.50550 | 50.20551 | 000012012 | 25.55000 | 50.20070 | 2107 | 54 | 10 10 | 3 | | 70 | 12:09:38 | 25 71 427 | 27.00020 | 13:02:20 | 25.71077 | 27.00070 | 4620 | | 1020 | | |-----|-------------------------|-----------|-----------|-------------------------|----------|-----------|-------|-----|------|---| | 79 | Oct 01 2012
16:13:22 | 25.71427 | -37.88028 | Oct 01 2012
17:08:02 | 25.71977 | -37.88878 | 4638 | 55 | 1030 | 6 | | 80 | Oct 01 2012 | 25.49070 | -37.65033 | Oct 01 2012 | 25.49507 | -37.65300 | 5469 | 52 | 1007 | 6 | | | 19:14:59 | | | 20:05:40 | | | | | | | | 81 | Oct 01 2012 | 25.13858 | -38.05037 | Oct 02 2012 | 25.14087 | -38.05040 | 5102 | 52 | 1038 | 5 | | | 23:23:36 | | | 00:14:49 | | | | | | | | 82 | Oct 02 2012 | 24.79673 | -38.44668 | Oct 02 2012 | 24.80510 | -38.44693 | 5299 | 53 | 1031 | 6 | | 0.2 | 03:32:30 | 24.50212 | 20 20717 | 04:24:58 | 24.50040 | 20.20002 | 5.422 | 5.5 | 1012 | 7 | | 83 | Oct 02 2012
06:29:29 | 24.58213 | -38.20717 | Oct 02 2012
07:23:37 | 24.58840 | -38.20803 | 5432 | 55 | 1012 | 7 | | 84 | Oct 02 2012 | 24.92392 | -37.80472 | Oct 02 2012 | 24.92668 | -37.80508 | 5628 | 53 | 1039 | 5 | | 04 | 10:32:05 | 24.72372 | -37.00472 | 11:24:37 | 24.72000 | -57.00500 | 3020 | 33 | 1037 | 3 | | 85 | Oct 02 2012 | 25.27028 | -37.40307 | Oct 02 2012 | 25.27757 | -37.40178 | 5143 | 54 | 1038 | 5 | | | 14:34:10 | | | 15:27:48 | | | | | | | | 86 | Oct 02 2012 | 25.05060 | -37.16792 | Oct 02 2012 | 25.05470 | -37.16953 | 5656 | 51 | 1038 | 6 | | | 17:33:26 | | | 18:23:41 | | | | | | | | 87 | Oct 02 2012 | 24.69837 | -37.56802 | Oct 02 2012 | 24.69973 | -37.56838 | 5101 | 53 | 1009 | 5 | | | 21:44:03 | | | 22:36:10 | | | | | | | | 88 | Oct 03 2012 | 24.35512 | -37.96688 | Oct 03 2012 | 24.35870 | -37.96753 | 5829 | 54 | 1039 | 6 | | 89 | 01:48:06
Oct 03 2012 | 24.13747 | -37.74828 | 02:42:08
Oct 03 2012 | 24.13717 | -37.74813 | 6177 | 55 | 1039 | 6 | | 89 | 04:38:40 | 24.13/4/ | -37.74626 | 05:33:25 | 24.13/1/ | -37.74613 | 01// | 33 | 1039 | 0 | | 90 | Oct 03 2012 | 24.48552 | -37.34902 | Oct 03 2012 | 24.49032 | -37.35237 | 5873 | 52 | 1005 | 7 | | , , | 08:43:15 | 21.10002 | 37.3.702 | 09:34:42 | 21.17032 | 37.30237 | 5075 | 02 | 1002 | , | | 91 | Oct 03 2012 | 24.83337 | -36.93693 | Oct 03 2012 | 24.83498 | -36.93802 | 5224 | 51 | 1040 | 5 | | | 12:55:15 | | | 13:45:39 | | | | | | | | 92 | Oct 03 2012 | 24.61502 | -36.71793 | Oct 03 2012 | 24.62010 | -36.72072 | 6420 | 52 | 1027 | 5 | | | 15:48:06 | | | 16:40:01 | | | | | | | | 93 | Oct 03 2012 | 24.26348 | -37.11892 | Oct 03 2012 | 24.26600 | -37.11888 | 4605 | 52 | 1009 | 6 | | 0.4 | 19:57:32 | 22.012.42 | 27.50457 | 20:49:09 | 22.01007 | 27 50022 | 5467 | 53 | 1024 | _ | | 94 | Oct 04 2012
00:07:04 | 23.91242 | -37.50457 | Oct 04 2012
00:59:12 | 23.91987 | -37.50023 | 5467 | 33 | 1034 | 5 | | 95 | Oct 04 2012 | 24.48428 | -37.76637 | Oct 04 2012 | 24.48897 | -37.76818 | 5762 | 55 | 1037 | 7 | |)3 | 04:52:49 | 24.40420 | -37.70037 | 05:46:41 | 24.40077 | -57.70010 | 3702 | 33 | 1037 | , | | 96 | Oct 04 2012 | 24.55010 | -38.03272 | Oct 04 2012 | 24.55758 | -38.03187 | 5049 | 90 | 2041 | 7 | | | 07:29:05 | | | 08:58:50 | | | | | | | | 97 | Oct 04 2012 | 24.59027 | -37.80337 | Oct 04 2012 | 24.59028 | -37.80328 | 5008 | 60 | 1040 | 6 | | | 20:27:23 | | | 21:26:53 | | | | | | | | 98 | Oct 04 2012 | 24.78353 | -37.91660 | Oct 04 2012 | 24.78360 | -37.91697 | 5316 | 55 | 1039 | 5 | | | 22:50:23 | | | 23:44:54 | | | 4000 | | | _ | | 99 | Oct 05 2012
02:58:57 | 25.21737 | -37.53267 | Oct 05 2012
03:50:22 | 25.21832 | -37.52282 | 4899 | 52 | 1034 | 5 | | 100 | 02:58:57
Oct 05 2012 | 25.63288 | -37.13040 | Oct 05 2012 | 25.62772 | -37.12183 | 5568 | 54 | 1034 | 7 | | 100 | 06:54:34 | 43.03400 | -37.13040 | 07:47:56 | 23.02112 | -37.12103 | 3300 | 34 | 1054 | / | | | 00.51.51 | | | 07.17.50 | | | | | | | Table 2: CTD stations occupied within 3 mile of WHOI mooring position | CTD Station | Start Date
Time | Start Lat | Start Long | End Date
Time | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle
Samples | |-------------|-------------------------|-----------|------------|-------------------------|----------|-----------|-------------|----------|------------|-------------------| | 3 | Sep 13 2012
09:24:16 | 24.56580 | -38.03152 | Sep 13 2012
12:53:02 | 24.58340 | -38.03873 | 4902 | 210 | 4911 | 16 | | 4 | Sep 13 2012
19:33:29 | 24.57297 | -38.03832 | Sep 13 2012
20:06:23 | 24.57307 | -38.03830 | 4885 | 35 | 349 | 4 | | 5 | Sep 14 2012
23:02:54 | 24.49750 | -38.00030 | Sep 15 2012
00:27:29 | 24.49663 | -38.00157 | 5508 | 88 | 2025 | 7 | | 6 | Sep 16 2012
17:18:35 | 24.57997 | -38.06238 |
Sep 16 2012
17:48:07 | 24.57997 | -38.06240 | 4628 | 31 | 319 | 5 | | 7 | Sep 16 2012
19:14:02 | 24.58088 | -38.05607 | Sep 16 2012
19:59:44 | 24.58387 | -38.04880 | 4663 | 46 | 348 | 6 | | 9 | Sep 18 2012
19:54:45 | 24.55072 | -38.03337 | Sep 18 2012
20:50:07 | 24.54730 | -38.03768 | 5074 | 57 | 1037 | 6 | | 12 | Sep 19 2012
13:25:01 | 24.54990 | -38.03283 | Sep 19 2012
14:16:51 | 24.54773 | -38.03520 | 5113 | 53 | 1037 | 7 | | 15 | Sep 20 2012
07:05:08 | 24.55033 | -38.03312 | Sep 20 2012
08:07:44 | 24.54892 | -38.03450 | 5110 | 63 | 1021 | 8 | | 18 | Sep 21 2012
01:10:31 | 24.54973 | -38.03287 | Sep 21 2012
02:03:06 | 24.54983 | -38.03382 | 5033 | 53 | 1038 | 7 | | 21 | Sep 21 2012
19:24:00 | 24.54997 | -38.03278 | Sep 21 2012
20:24:41 | 24.54847 | -38.03277 | 5104 | 62 | 1018 | 12 | | 40 | Sep 25 2012
23:03:09 | 24.55027 | -38.03343 | Sep 25 2012
23:57:24 | 24.55018 | -38.03342 | 5081 | 55 | 1041 | 7 | | 43 | Sep 26 2012
16:38:45 | 24.54787 | -38.03240 | Sep 26 2012
17:37:35 | 24.54777 | -38.03447 | 5128 | 61 | 1038 | 7 | | 44 | Sep 26 2012
18:00:56 | 24.55060 | -38.03290 | Sep 26 2012
18:56:11 | 24.55340 | -38.03520 | 5051 | 56 | 1039 | 6 | | 47 | Sep 27 2012
10:32:11 | 24.55120 | -38.03403 | Sep 27 2012
11:26:52 | 24.54950 | -38.03473 | 5098 | 56 | 1039 | 6 | | 50 | Sep 28 2012
03:00:08 | 24.55100 | -38.03377 | Sep 28 2012
04:03:54 | 24.54992 | -38.03420 | 5103 | 64 | 1036 | 7 | | 96 | Oct 04 2012
07:29:05 | 24.55010 | -38.03272 | Oct 04 2012
08:58:50 | 24.55758 | -38.03187 | 5049 | 90 | 2041 | 7 | Table 3: CTD stations occupied within 3 mile of PICO-E mooring position | CTD Station | Start Date
Time | Start Lat | Start Long | End Date
Time | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle
Samples | |-------------|-------------------------|-----------|------------|-------------------------|----------|-----------|-------------|----------|------------|-------------------| | 11 | Sep 19 2012
08:14:26 | 24.48333 | -37.76668 | Sep 19 2012
09:08:34 | 24.48307 | -37.76773 | 5830 | 54 | 1037 | 7 | | 14 | Sep 20 2012
01:33:58 | 24.48287 | -37.76740 | Sep 20 2012
02:27:07 | 24.48153 | -37.76860 | 5769 | 55 | 1037 | 7 | | 17 | Sep 20 2012
19:54:59 | 24.48300 | -37.76760 | Sep 20 2012
20:53:50 | 24.48180 | -37.76748 | 5779 | 59 | 1018 | 8 | | 20 | Sep 21 2012
14:01:45 | 24.48342 | -37.76773 | Sep 21 2012
14:53:02 | 24.48202 | -37.76857 | 5771 | 53 | 1039 | 7 | | 39 | Sep 25 2012
18:05:44 | 24.48453 | -37.76872 | Sep 25 2012
19:10:13 | 24.48457 | -37.76877 | 4395 | 64 | 1019 | 6 | | 42 | Sep 26 2012
10:15:21 | 24.48363 | -37.76503 | Sep 26 2012
11:11:48 | 24.48377 | -37.76502 | 5770 | 57 | 1038 | 7 | | 46 | Sep 27 2012
05:27:29 | 24.48403 | -37.76773 | Sep 27 2012
06:23:32 | 24.48280 | -37.76987 | 5728 | 56 | 1039 | 7 | | 49 | Sep 27 2012
21:51:34 | 24.48308 | -37.76717 | Sep 27 2012
22:45:23 | 24.48192 | -37.76858 | 5777 | 55 | 1019 | 6 | | 95 | Oct 04 2012
04:52:49 | 24.48428 | -37.76637 | Oct 04 2012
05:46:41 | 24.48897 | -37.76818 | 5762 | 55 | 1037 | 7 | Table 4: CTD stations occupied within 3 mile of PICO-N mooring position | CTD Station | Start Date | Start Lat | Start Long | End Date Tim | e End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle Samples | |-------------|---------------------------------|-----------|------------|-------------------------|-----------|-----------|-------------|----------|------------|----------------| | 10 | Time
Sep 19 2012
01:38:50 | 24.78287 | -37.91667 | Sep 19 2012
02:30:57 | 24.78287 | -37.91923 | 5330 | 53 | 1037 | 7 | | 13 | Sep 19 2012
18:59:51 | 24.78182 | -37.91760 | Sep 19 2012
19:53:37 | 24.77878 | -37.91813 | 5462 | 56 | 1018 | 7 | |----|-------------------------|----------|-----------|-------------------------|----------|-----------|------|-----|------|----| | 16 | Sep 20 2012
12:27:38 | 24.78392 | -37.91688 | Sep 20 2012
13:20:37 | 24.78680 | -37.92140 | 5446 | 53 | 1039 | 7 | | 19 | Sep 21 2012
06:09:18 | 24.78318 | -37.91780 | Sep 21 2012
06:59:10 | 24.78168 | -37.91817 | 5319 | 51 | 1008 | 7 | | 22 | Sep 22 2012
00:50:28 | 24.78292 | -37.91813 | Sep 22 2012
01:43:22 | 24.78013 | -37.91842 | 5339 | 54 | 1038 | 7 | | 38 | Sep 25 2012
11:21:58 | 24.78340 | -37.91540 | Sep 25 2012
13:03:51 | 24.78340 | -37.91540 | 5287 | 102 | 2025 | 12 | | 41 | Sep 26 2012
03:56:18 | 24.78550 | -37.91622 | Sep 26 2012
04:53:20 | 24.78658 | -37.91740 | 5390 | 57 | 1038 | 7 | | 45 | Sep 26 2012
23:07:53 | 24.78323 | -37.91738 | Sep 27 2012
00:01:34 | 24.78218 | -37.91837 | 5344 | 54 | 1039 | 6 | | 48 | Sep 27 2012
15:37:44 | 24.78207 | -37.91832 | Sep 27 2012
16:35:17 | 24.78077 | -37.91897 | 5461 | 57 | 1039 | 7 | | 51 | Sep 28 2012
08:03:21 | 24.78298 | -37.91867 | Sep 28 2012
09:01:29 | 24.78320 | -37.91983 | 5461 | 59 | 1019 | 8 | | 98 | Oct 04 2012
22:50:23 | 24.78353 | -37.91660 | Oct 04 2012
23:44:54 | 24.78360 | -37.91697 | 5316 | 55 | 1039 | 5 | | | | | | | | | | | | | Table 5: CTD casts taken during the 18-hour dynamic positioning station | CTD Station | Start Date | Start Lat | Start Long | End Date
Time | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle
Samples | |-------------|-------------------------|-----------|------------|-------------------------|----------|-----------|-------------|----------|------------|-------------------| | 52 | Sep 29 2012
07:03:42 | 25.50000 | -38.49990 | Sep 29 2012
07:34:33 | 25.50000 | -38.50007 | 5252 | 29 | 502 | 2 | | 53 | Sep 29 2012
08:08:56 | 25.49998 | -38.50003 | Sep 29 2012
08:36:19 | 25.49998 | -38.50007 | 4992 | 26 | 501 | 2 | | 54 | Sep 29 2012
09:04:33 | 25.50000 | -38.50007 | Sep 29 2012
09:32:07 | 25.50000 | -38.50007 | 4989 | 27 | 501 | 2 | | 55 | Sep 29 2012
10:04:53 | 25.50000 | -38.50003 | Sep 29 2012
10:37:31 | 25.49998 | -38.50007 | 4991 | 31 | 507 | 2 | | 56 | Sep 29 2012
11:02:25 | 25.49998 | -38.50007 | Sep 29 2012
11:29:37 | 25.50008 | -38.49937 | 4985 | 26 | 506 | 2 | | 57 | Sep 29 2012
12:04:24 | 25.49998 | -38.49998 | Sep 29 2012
12:33:41 | 25.49997 | -38.50007 | 4986 | 29 | 506 | 2 | | 58 | Sep 29 2012
12:58:04 | 25.50003 | -38.49988 | Sep 29 2012
13:30:32 | 25.49998 | -38.50003 | 4982 | 29 | 507 | 2 | | 59 | Sep 29 2012
14:00:31 | 25.49997 | -38.50003 | Sep 29 2012
14:26:59 | 25.49998 | -38.50007 | 4987 | 27 | 497 | 2 | | 60 | Sep 29 2012
15:07:48 | 25.49997 | -38.50003 | Sep 29 2012
15:35:06 | 25.49997 | -38.50003 | 4982 | 25 | 497 | 2 | | 61 | Sep 29 2012
16:01:46 | 25.49997 | -38.50003 | Sep 29 2012
16:29:22 | 25.49997 | -38.50003 | 4982 | 25 | 497 | 2 | | 62 | Sep 29 2012
17:02:22 | 25.49997 | -38.50007 | Sep 29 2012
17:28:55 | 25.49997 | -38.50003 | 4981 | 25 | 497 | 2 | | 63 | Sep 29 2012
18:03:38 | 25.49998 | -38.50007 | Sep 29 2012
18:32:14 | 25.49998 | -38.50003 | 4990 | 28 | 502 | 2 | | 64 | Sep 29 2012
19:02:59 | 25.49997 | -38.50007 | Sep 29 2012
19:30:47 | 25.49997 | -38.50007 | 4993 | 26 | 500 | 2 | | 65 | Sep 29 2012
20:02:33 | 25.49997 | -38.50003 | Sep 29 2012
20:30:02 | 25.49997 | -38.50007 | 4982 | 26 | 506 | 2 | | 66 | Sep 29 2012
21:02:57 | 25.49998 | -38.50003 | Sep 29 2012
21:33:22 | 25.49997 | -38.50007 | 4989 | 31 | 506 | 2 | | 67 | Sep 29 2012
22:04:34 | 25.49997 | -38.50007 | Sep 29 2012
22:34:20 | 25.49997 | -38.50003 | 4981 | 32 | 506 | 2 | | 68 | Sep 29 2012
23:01:53 | 25.49997 | -38.50003 | Sep 29 2012
23:32:17 | 25.49997 | -38.50007 | 4998 | 31 | 506 | 2 | | 69 | Sep 30 2012
00:01:20 | 25.49997 | -38.50003 | Sep 30 2012
00:31:58 | 25.49997 | -38.50007 | 4988 | 31 | 506 | 2 | | 70 | Sep 30 2012
00:58:07 | 25.49997 | -38.50007 | Sep 30 2012
01:28:15 | 25.49998 | -38.50003 | 4989 | 31 | 506 | 2 | | | | | | | | | | | | | Table 6: CTD stations occupied during large grid survey | CTD Station | Start Date | Start Lat | Start Long | End Date | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle | |-------------|-------------|-----------|------------|-------------|----------|-----------|-------------|----------|------------|---------| | | Time | | | Time | | | | | | Samples | | 71 | Sep 30 2012 | 25.45777 | -39.15338 | Sep 30 2012 | 25.45810 | -39.15570 | 4969 | 54 | 1018 | 6 | | | 07:28:53 | | | 08:21:32 | | | | | | | |----|-------------------------|----------|-----------|-------------------------|----------|-----------|------|----|------|---| | 72 | Sep 30 2012
11:35:52 | 25.80352 | -38.74832 | Sep 30 2012
12:27:42 | 25.80377 | -38.74858 | 5023 | 53 | 1039 | 6 | | 73 | Sep 30 2012
15:58:51 | 26.15033 | -38.33742 | Sep 30 2012
16:52:08 | 26.15198 | -38.34318 | 5271 | 54 | 1036 | 6 | | 74 | Sep 30 2012
19:33:27 | 25.92612 | -38.11010 | Sep 30 2012
20:28:17 | 25.92717 | -38.11923 | 4626 | 55 | 1011 | 6 | | 75 | Oct 01 2012
01:06:33 | 25.58387 | -38.50393 | Oct 01 2012
02:02:37 | 25.58787 | -38.50523 | 4804 | 57 | 1039 | 6 | | 76 | Oct 01 2012 | 25.23873 | -38.91672 | Oct 01 2012 | 25.24412 | -38.92052 | 4536 | 53 | 1036 | 7 | | 77 | 05:15:13
Oct 01 2012 | 25.02218 | -38.67987 | 06:07:59
Oct 01 2012 | 25.03188 | -38.68077 | 5211 | 53 | 1003 | 7 | | 78 | 08:07:16
Oct 01 2012 | 25.36330 | -38.28537 | 08:59:52
Oct 01 2012 | 25.36600 | -38.28678 | 5104 | 54 | 1040 | 5 | | 79 | 12:09:38
Oct 01 2012 | 25.71427 | -37.88028 | 13:02:20
Oct 01 2012 | 25.71977 | -37.88878 | 4638 | 55 | 1030 | 6 | | 80 | 16:13:22
Oct 01 2012 | 25.49070 | -37.65033 | 17:08:02
Oct 01 2012 | 25.49507 | -37.65300 | 5469 | 52 | 1007 | 6 | | 81 | 19:14:59
Oct 01 2012 | 25.13858 | -38.05037 | 20:05:40
Oct 02 2012 | 25.14087 | -38.05040 | 5102 | 52 | 1038 | 5 | | 82 | 23:23:36
Oct 02 2012 | 24.79673 | -38.44668 | 00:14:49
Oct 02 2012 | 24.80510 | -38.44693 | 5299 | 53 | 1031 | 6 | |
83 | 03:32:30
Oct 02 2012 | 24.58213 | -38.20717 | 04:24:58
Oct 02 2012 | 24.58840 | -38.20803 | 5432 | 55 | 1012 | 7 | | | 06:29:29 | | | 07:23:37 | | | | | | | | 84 | Oct 02 2012
10:32:05 | | -37.80472 | Oct 02 2012
11:24:37 | | -37.80508 | 5628 | 53 | 1039 | 5 | | 85 | Oct 02 2012
14:34:10 | 25.27028 | -37.40307 | Oct 02 2012
15:27:48 | | -37.40178 | 5143 | 54 | 1038 | 5 | | 86 | Oct 02 2012
17:33:26 | 25.05060 | -37.16792 | Oct 02 2012
18:23:41 | 25.05470 | -37.16953 | 5656 | 51 | 1038 | 6 | | 87 | Oct 02 2012
21:44:03 | 24.69837 | -37.56802 | Oct 02 2012
22:36:10 | 24.69973 | -37.56838 | 5101 | 53 | 1009 | 5 | | 88 | Oct 03 2012
01:48:06 | 24.35512 | -37.96688 | Oct 03 2012
02:42:08 | 24.35870 | -37.96753 | 5829 | 54 | 1039 | 6 | | 89 | Oct 03 2012
04:38:40 | 24.13747 | -37.74828 | Oct 03 2012
05:33:25 | 24.13717 | -37.74813 | 6177 | 55 | 1039 | 6 | | 90 | Oct 03 2012
08:43:15 | 24.48552 | -37.34902 | Oct 03 2012
09:34:42 | 24.49032 | -37.35237 | 5873 | 52 | 1005 | 7 | | 91 | Oct 03 2012
12:55:15 | 24.83337 | -36.93693 | Oct 03 2012
13:45:39 | 24.83498 | -36.93802 | 5224 | 51 | 1040 | 5 | | 92 | Oct 03 2012 | 24.61502 | -36.71793 | Oct 03 2012 | 24.62010 | -36.72072 | 6420 | 52 | 1027 | 5 | | 93 | 15:48:06
Oct 03 2012 | 24.26348 | -37.11892 | 16:40:01
Oct 03 2012 | 24.26600 | -37.11888 | 4605 | 52 | 1009 | 6 | | 94 | 19:57:32
Oct 04 2012 | 23.91242 | -37.50457 | 20:49:09
Oct 04 2012 | 23.91987 | -37.50023 | 5467 | 53 | 1034 | 5 | | | 00:07:04 | | | 00:59:12 | | | | | | | Table 7: CTD stations occupied during 'butterfly' grid survey | CTD Station | Start Date
Time | Start Lat | Start Long | End Date
Time | End Lat | End Long | Bathy Depth | Duration | Cast Depth | Bottle
Samples | |-------------|-------------------------|-----------|------------|-------------------------|----------|-----------|-------------|----------|------------|-------------------| | 23 | Sep 22 2012
10:02:22 | 25.24797 | -37.00202 | Sep 22 2012
10:58:02 | 25.24692 | -37.00152 | 5915 | 57 | 1020 | 6 | | 24 | Sep 22 2012
14:25:54 | 24.74988 | -37.00150 | Sep 22 2012
15:19:26 | 24.74787 | -37.00388 | 5645 | 54 | 1039 | 7 | | 25 | Sep 22 2012
19:29:12 | 24.24253 | -37.00190 | Sep 22 2012
20:25:29 | 24.24100 | -37.00233 | 5468 | 56 | 1020 | 7 | | 26 | Sep 22 2012
23:54:29 | 23.75008 | -37.00267 | Sep 23 2012
00:45:52 | 23.74843 | -37.00503 | 5594 | 53 | 1038 | 7 | | 27 | Sep 23 2012
04:12:52 | 23.74988 | -37.50033 | Sep 23 2012
05:04:41 | 23.74880 | -37.50048 | 5795 | 51 | 1040 | 7 | | 28 | Sep 23 2012
08:25:02 | 23.75023 | -38.00128 | Sep 23 2012
09:23:42 | 23.75007 | -38.00248 | 5730 | 60 | 1020 | 7 | | 29 | Sep 23 2012
13:09:17 | 24.25067 | -38.00140 | Sep 23 2012
13:59:09 | 24.24940 | -38.00372 | 5764 | 51 | 1039 | 7 | | 30 | Sep 23 2012 | 24.75222 | -38.00538 | Sep 23 2012 | 24.75373 | -38.00680 | 5460 | 55 | 1039 | 7 | | | 17:46:25 | | | 18:39:08 | | | | | | | |----|-------------------------|----------|-----------|-------------------------|----------|-----------|------|----|------|---| | 31 | Sep 23 2012
22:28:06 | 25.25038 | -38.00123 | Sep 23 2012
23:17:57 | 25.25202 | -38.00382 | 5086 | 49 | 1020 | 6 | | 32 | Sep 24 2012
02:43:46 | 25.25043 | -38.49997 | Sep 24 2012
03:35:16 | 25.25270 | -38.50162 | 5337 | 52 | 1039 | 7 | | 33 | Sep 24 2012
06:31:25 | 25.25007 | -38.99993 | Sep 24 2012
07:24:22 | 25.24973 | -38.99998 | 5083 | 53 | 1041 | 6 | | 34 | Sep 24 2012
10:35:47 | 24.75610 | -39.00208 | Sep 24 2012
11:31:44 | 24.75502 | -39.00313 | 5195 | 57 | 1019 | 7 | | 35 | Sep 24 2012
15:06:59 | 24.24908 | -39.00230 | Sep 24 2012
15:59:46 | 24.24813 | -39.00330 | 5070 | 53 | 1042 | 7 | | 36 | Sep 24 2012
19:32:02 | 23.75353 | -39.00132 | Sep 24 2012
20:27:34 | 23.75202 | -39.00290 | 5550 | 56 | 1019 | 7 | | 37 | Sep 24 2012
23:44:29 | 23.74970 | -38.50147 | Sep 25 2012
00:35:27 | 23.74800 | -38.50547 | 5585 | 52 | 1037 | 7 | ## Salinometry - Jason Smith The salinometer used on the SPURS (KN209) cruise was an Autosal model 8400B (WHOI #11). It was set up in the analytical lab of the *R/V Knorr*, with the intent of maintaining a stable room temperature. This salinometer was also used on the preceding cruise (Line-W, Woods Hole to Woods Hole). As the ship was initially having some trouble with the air conditioning system, the Autosal bath temp was raised from 24°C to 27°C for the duration of the cruise. Every attempt was then made to keep the room temperature near 25°C. Once the temperatures were stabilized, the salinometer was standardized. OSIL IAPSO standard seawater, batch # P-154, was used for all standardizations. A few trial runs were then conducted to check the Autosal for stability. It quickly became apparent that when running a series of bottles, there would occasionally be an errant value. A well mixed bottle would produce a couple of reasonably stable readings and then the conductivity ratio would quickly climb over 100 units, and then start to drift back down. Shutting down the unit and doing a visual inspection of the interior yielded no obvious major problems, although the venting fan appeared to be partially blocked. The method of securing the salinometer to the bulkhead was changed to improve the flow of the venting fan. Drain tube routing was also changed to ensure that there was no way for the tube to contact the container being used to collect the flushed sample water. Running more test bottles showed that while most readings were stable, a noisy unstable reading might still crop up. It was then noticed that occasionally the barbed plastic drain hose fitting would not fully clear itself after sample flushing. Readings taken under this condition seemed to be less stable than those taken while the drain was completely clear. The fix was to make 3 modifications to the setup. The salinometer was tilted slightly towards the operator, the flow rate of the sample was increased, and the plastic barbed fitting was ovaled vertically. Further test runs showed the readings to be repeatable and acceptably quiet. Over the next several weeks samples collected were analyzed daily. Standard procedure was to allow the samples to sit overnight so that they were at the controlled room temperature at the time of testing. For the first few days, the Autosal was standardized prior to that day's run of bottles, and then again afterward to verify that there was no drift. Seeing a lack of drift, standardizations were limited to the beginning of each daily testing session. All samples were carefully mixed prior to analysis. In all, 1034 samples were analyzed. 635 were drawn from Niskin bottles on the CTD rosette following casts of various depths. 352 bottles were filled with seawater leading to one of R/V *Knorr*'s thermosalinographs. 40 samples were collected from a bucket thrown over the side hourly during the 24 hour single-station time series. 7 bottles were filled by submerging them directly at the surface. Only 1 surface sample was not analyzed, because it exhibited excessive bio-contamination. Fortunately, it was 1 of 2 samples taken from the same source and the second bottle was much cleaner ## LADCP Data and Data Processing -Julian Schanze LADCP data were acquired on all CTD stations using a RDI Workhorse 150kHz Acoustic Doppler Current Profiler, which was mounted downward looking on the CTD frame. The ambiguity velocity was set to 3.0 m/s for stations 001 through 007 and was reduced to 2.5 m/s due to operation in a low-current area with low scatterers to minimize the influence of erroneous bins. The WH150 was charged to full voltage (48VDC nominal, usually around 50V) as determined by a charging current of less than 0.2A at 58V charging voltage. Data were downloaded and erased from the recorder after each cast with the exception of casts 038 and 039 in which time was insufficient to download data. The data for cast 038 and 039 is thus identical. In processing the data, however, the timestamp from the CTD data ensures that only the appropriate portion of the data is used in processing, thus ensuring that both stations are processed correctly. All data were stored on both LADCP acquisition PCs, LADCP5 and LADCP3 and were backed up on 2 USB drives that are being carried to Woods Hole by Julian Schanze. The data was furthermore duplicated to the shipboard server in the share science_on_memory, including both raw and processed data. All data acquisition was done on LADCP-3 using LADCP_acquire (http://www.ldeo.columbia.edu/cgi-bin/ladcp-cgi-bin/hgwebdir.cgi) with parameters as listed below. All processing was completed on LADCP-5 using the LDEO_IX software package maintained by Andreas M Thurnherr (http://www.ldeo.columbia.edu/cgi-bin/ladcp-cgi-bin/hgwebdir.cgi). Version IX_8 was used for all processing. The data is provided relative to the LADCP root directory for cruise KN209-01, which is uploaded to science_on_memory and will be referred to as (LADCP root). The directory structure is as follows ``` (LADCP root) -kn209-01 xxx (directory for each station using leading zeros and 3 digits, 001-100) (processed data) -pro (raw data and settings) -updn -checkpoints (checkpoints written by LDEO IX software) -ctdladcp (CTD data in time-format (1s resolution), needed by LDEO IX) (directory containing Shipboard ADCP data) -SADCP IN -wh300 (Workhorse 300kHz data) (actual MATLAB data file folder) -contour (Ocean Surveyor 75kHz data, narrow band) -os75nb (actual MATLAB data file folder) -contour (Ocean Surveyor 75kHz data, broad band) -os75bb (actual MATLAB data file folder) -contour (directory of MATLAB scripts and functions as found on the -matlab LADCP-5 computer) ``` The only relevant folder in the MATLAB directory is (LADCP
root)/matlab/wh/m. There are also some files directly in (LADCP root): kn200, 01, saden mat (interpolated shiphoard LADCP data using both) kn209_01_sadcp.mat (interpolated shipboard LADCP data using both WH300 and OS75BB data for shallow and deep depths, respectively). Set_casts_params.m (main settings file used by LDEO_IX The shipboard NMEA string has occasional drop-outs in both latitude and longitude. This was addressed by a simple (conservative) fix in the LDEO_IX software, which is supplied in the LADCP data directory under (LADCP root)/matlab/wh/m/loadnav DT IX.m ``` % Addded linear interpolation for drop-outs in navigation % Julian Schanze jschanze@whoi.edu 11-Sep-2012 slat=data(:,1); slon=data(:,2); llhalf=floor(length(slat)/2); slatmu = median(slat); slonmu = median(slon); slatmu1 = median(slat(1:llhalf)); slonmu1 = median(slon(1:llhalf)); slatmu2 = median(slat(llhalf+1:end)); slonmu2 = median(slon(llhalf+1:end)); slatmudiff=abs(slatmu1-slatmu2); slonmudiff=abs(slonmu1-slonmu2); % This should be about half the total ship drift (if it is linear, which it % may not be) % For safety, multiply this result by 5 rather than 2. slatoutliers = abs(slat - slatmu) > 10*slatmudiff; slonoutliers = abs(slon - slonmu) > 10*slonmudiff; slat(slatoutliers)=NaN; slon(slonoutliers)=NaN; slat(isnan(slat)) = interp1(find(\sim isnan(slat)),... slat(~isnan(slat)), find(isnan(slat)),'cubic'); slon(isnan(slon)) = interp1(find(\sim isnan(slon)),... slon(~isnan(slon)), find(isnan(slon)),'cubic'); d.slat=slat: d.slon=slon; ``` The code should be self-explanatory. Other modifications were done to loadrdi.m, process_cast.m, edit_data.m, battery.m and plotinv.m and a new function "mkSADCPjjs.m" was added to merge SADCP data. All of these files may be found in (LADCP root)/matlab/wh/m/ Most of these changes are minor and deal with issues that were encountered in data processing, such as navigational dropouts, low scatter below approximately 900m depth and interference from other instruments (possibly the shipboard ADCP?). A typical output of LDEO_IX looks as follows: # Station: kn209-01 St.079g ABS CTD+NAV+SADCP Figure 1 The left side panel shows u and v velocities estimated using shear-only, SADCP constraints and the 'best estimate'. Metadata (Time, latitude, longitude, mean velocities, magnetic deviations, maximum depth...) are shown in the upper left hand column. The station number is prominently printed at the top of the page. The units are in cm/s, which is cut off as there is no bottom plot in this processing mode. The horizontal resolution is 5m for this. This may be adjusted in set_cast_param.m. The middle-right hand side has plots of target strength, showing a typical profile of high scattering in the upper 150m and a layer of deep scatterers concentrated around 600m. The range in the first 200m is limited due to the high attenuation due to scatters. Below 800m, the range also decreases due to lower abundance of scatterers. An estimate of the velocity error is shown in the right hand figure in black. The GPS navigation (i.e. the ship's motion, green) and the shear-integrated velocity of the CTD package (CTD position, blue) are shown in the lower right hand corner. A typical image of Figure 14 is shown below: # kn209-01 St.0/9g ABS CID+NAV+SADCP Figure 14 800 000 1200 14 Ensemble # This indicates the transition of the LADCP through the water column, starting at first ensemble (at the surface), where maximum scatter is found. One can see the artifacts and the removal of the artifacts, being mindful not to accidentally remove any good data (see documentation and code comments in LDEO_IX Software). This data may be used to produce plots of velocities and shear. It appears that on this cruise, shear was often associated with a relatively sharp 1600 thermocline found around 60m or so. This is shown below in an image generated by the code provided in (LADCP root)/matlab/wh/m, in which some lines have been added to process_cast.m to produce a figure as shown below: This Figure shows u,v (left) Temperature, Salinity and Shear, but should only be treated as a preliminary estimate. The length of the vector indicates speed, the orientation indicates direction and color-coding indicates temperature. Additional information about procedure used to deploy LADCP: The LADCP was deployed using the LADCP_acquire package using the following setup variables: CR1 WM15 TC2 TB 00:00:02.00 TE 00:00:00.80 TP 00:00.00 WP 1 WN60 WS0500 WF0500 WV250 EZ0011101 EX00100 CF11101 RN RDI This specifies 2s pings with 0.8s 'waits', 60 bins of 5 meters each and an ambiguity velocity of 2.5 m/s. The original setup of the 150kHz down-looking LADCP was an ambiguity velocity of 3 m/s and 8m bin sizes, but bin sized were adjusted by Daniel Torres (dtorres@whoi.edu) to 5m for higher resolution and ambiguity velocity was reduced by Julian Schanze (jschanze@whoi.edu) to reduce spurious returns below 900m. The instrument was then disconnected from the cable, the connector was lubed with silicone grease and dummied off. After recovery, the instrument was hosed down with freshwater, the connector was dried and un-dummied and connected to the cable. Charging was done simultaneously with the data download, which worked flawlessly at 115200 kbit/s. The 4x12V sealed lead acid battery pack was charged using a current-limited and voltage-limited power supply at 1.6A and 58V until the charging current dropped to approximately 0.2A. The pack was then vented. After verifying a successful download, the recorder was erased to be ready for the next deployment. ## Cautions: Values of u and v below 900m should not be trusted at most stations. Please look carefully at the estimated errors. Most paper plots have an erroneous factor of 50 for shear (as shown in the previous plot). Please divide these numbers by 50 if you want to estimate the shear. This has been fixed in the MATLAB script and re-processed. # <u>Underway CTD -PI: Farrar; (watch standers: Lord, Hodges, Faluotico, Shanley, Meyer, Anderson, Whitely, Ngoima, Smith)</u> Two Oceanscience UCTD Underway Profiling Systems (or Underway CTD systems) were used heavily during the cruise, with about 740 underway CTD casts being collected between 17 September and 5 October. Each UCTD system consists of a battery-powered, internally recording CTD with a tail spool, a tail-spool winder, and a winch (Figure X1). In "free cast" mode, a length of line is wound on the tail spool with the winder, and the probe is dropped over the stern while underway; the probe falls nearly vertically through the water as the tail spool unwinds and the winch, set to free spool, pays out line to compensate for the ship's forward motion. We used, in various combinations, winches WI1029 and WI1031, winders RW1000 and RW1005, and probes 70200010, 70200023, 70200027, 70200029. All four probes had been freshly calibrated by the manufacturer (SeaBird). With about 764 good casts taken, the UCTD systems saw very heavy use and proved to be mechanically robust given the duty cycle to which they were subjected (often performing up to 4 casts/hour). 24-hour operations were carried out from about 2200 UTC on 16 September 2012. The heavy duty cycle led to overheating of the winches; there were several winch failures, but repairs were made, typically by cleaning/repairing the brushes of the electric winch motors. By the end of the cruise, we had rigged a water cooling system by wrapping tygon tubing around the winch motor and continuously running seawater through it. We also tried propping the winch enclosure open slightly to allow air cooling and wiping the winch enclosure down with fresh water (for evaporative cooling). All three approaches had merits. An electronic log was kept, with an entry made each time the data were offloaded from the instrument. Each cast has a separate data file, and the header of these files is the authoritative record of the cast time. The header gives the time the instrument was turned on, and the time the cast actually starts is determined by counting the number of 16 Hz scans until the instrument pressure exceeds 1 dbar. The position of each cast can be determined by matching this time with the 1-minute records of ship's GPS positions (from \\\192.168.11.30\\data_on_memory\\athena*.csv files on the *Knorr's* network). A map of the positions of the casts is shown in Figure X2. Instrument clocks were checked against the ship's GPS time periodically over the cruise, and no clock drift was detected. Data format and processing: The data record for each cast is stored in an ascii (text) file and contains the pressure, temperature, and conductivity output by the instrument. The file names are based on the date, approximate time, and the probe serial number; for example, file "092712_092910.SN10.asc" was collected on 27 September 2012, at approximately 09:29:10 UTC, using probe number 10. The header of each file contains the time the instrument was turned on (i.e., when the magnet was removed), and the scan number stored in the file can be used to precisely determine the time the cast actually started. The data processing done so far has been only cursory; conductivity has been lagged by one scan (1/16 second) in an attempt to better align it with the slower temperature measurement for estimation of salinity from temperature and conductivity. While this does a reasonably good job of reducing the salinity spiking that results from the mismatch of the temperature/conductivity time responses, this lagalignment procedure needs to be revisited. Figure X1: UCTD system during deployment on the port side of the *Knorr's* fantail. **Figure X2:** Positions of UCTD casts (black squares). The colored field is surface salinity from the TSG (uncorrected). The track of UCTD samples extending off the northern edge of the map extends to about 27.5°N. The inner triangle near 24.5°N, 38°W was sampled
repeatedly. Typical station spacing ranged from 2-6 km. The probes are designed to fall through the water at approximately 4 m/s, and the target depth for all casts was 400 m (100-120 s fall time). The fall speed was found to depend on various factors, including which winch was used and the direction of the windings on the tail spool. (The winder alternates the direction of the windings on the tail spool for each cast.) There is also some slight variation in the fall rate as the windings come off of the tail spool (Figure X3). Some casts were shallower than the target depth (e.g., because of tangled line or aborted casts) and some were deeper than the target depth (e.g., if the operator let the probe fall for 120 s or more). **Figure X3:** UCTD fall rates computed from rate of change of pressure. The nearly periodic signal in the number of seconds for which fall rates over 2 m/s are seen is due to the change of watches, with different watches letting the probe fall for 100-120 seconds before beginning retrieval. There were also systematic differences between winches, as seen in the composite fall rates in the right panel for the two winches. Data quality monitoring: Data quality was monitored continuously during UCTD operations, primarily by use of an automated script that compares a near-surface value of salinity from each cast to the shipboard thermosalinograph (TSG; 5-m intake) and compares T-S profiles of nearly co-located UCTD and shipboard CTD casts. The TSG and shipboard CTD were regularly compared to water samples run on the salinometer, and they are more trustworthy than the UCTD. Special efforts were made to time UCTD casts to occur as nearly as possible to CTD stations. Examples of these quality-control measures are shown in Figures X4-X5. Probes were rotated out of service on the basis of these comparisons. **Figure X4:** Comparison of UCTD data at 10 m (black dots and pink circles) to underway TSG data at 5 m (blue line; with a preliminary estimated bias of 0.007 psu removed) and shipboard CTD at 10 m (red circles). The dashed, vertical lines indicate times when UCTD probes were switched (see also Fig. X5). This was one of the measures undertaken to monitor performance of the UCTD probes. Two probes (10 and 27) were taken out of service after their glass conductivity cells were broken in collisions with the stern during recovery. Probe 29 had a faulty battery connection. We attempted to repair it but could not reliably collect data while the probe was deployed; it could, however, reliably collect data on the bench. Probe 23 was taken out of service on 26 September because its salinity appeared to be biased high based on comparisons of its measured T-S relationship to that of the shipboard CTD (e.g., Figure X5). It re-entered service on 3 October 2012 after the only other functioning probe (SN10) was damaged during recovery (broken conductivity cell). On 5 October 2012 at 19:15 UTC, probe 23 was lost at sea when the bail on the tail spool apparently vibrated loose. The ship speed was 11.2 knots. **Figure X5:** Salinity (uncorrected) on the 16°C isotherm for the shipboard CTD (black circles) and the UCTD (colored circles, with color indicating probe number). The T-S relationship is relatively stable at 16°C, and this was used as a metric of probe performance during UCTD operations. Probe 23 was re-entered into service after all of the other probes ceased to function. Prospects for in situ calibration: Since one probe was lost, two have damaged conductivity cells, and the fourth saw only limited use because it ceased to function, post-cruise calibration will be of limited utility. The salinities shown in Figures X4-X5 are uncorrected, but it may be possible to use the coincident CTD and UCTD casts or other information, such as the relatively stable deep T-S relations, to correct biases in the data from individual probes. The best way to do this is not clear; one possibility would be to attempt separate regressions of temperature and conductivity against the nearly coincident CTD casts. Internal-wave heaving or other variability on short temporal or spatial scales is apparent from the fact that the CTD-UCTD T-S relations agree better than the T and S do individually, so the success of this approach would require an adequate statistical sample. Another approach might be to assume that the temperatures measured by the UCTD probes were accurate and regress conductivities or salinities as a function of measured temperature. This approach would be akin to performing a calibration in T-S space under the assumption that T was measured accurately. These possibilities and others need further evaluation prior to preparation of a final version of the data. SPURS Microstructure - Ken Decoteau, Alec Bogdanoff, Oliver Sun and James Riley The microstructure effort of the SPURS I cruise was led by the Mixing, Measurement, and Modeling (MMM) group at the Woods Hole Oceanographic Institution (WHOI) under Principal Investigators Raymond Schmitt, Louis St. Laurent and Carol Anne Clayson. Engineer Ken Decoteau led the shipboard microstructure operations for SPURS with the team listed above. The MMM @ WHOI group fielded eight instruments for the SPURS I cruise: two Rockland Scientific VMP5500 Vertical Microstructure Profilers, three Slocum Electric Gliders, and three Rockland MicroRider turbulence packages. The VMPs were equipped with microstructure temperature and shear probes, along with standard Seabird CTDs in pumped operation. Each Slocum Glider was deployed with a MicroRider attached. The combined platforms, which became known as a "T-Gliders," collected turbulence data similar to that of the VMPs, in addition to standard CTD and navigational data. **Pictured**: Ken and Oliver on a VMP recovery (left) and initial deployment of Helo using the rake (below). VMP missions were planned for each CTD station during SPURS. The VMP was typically released a few minutes before the ship's CTD was lowered into the water and recovered immediately after the CTD rosette was secured on deck. The microstructure and CTD profiles were taken nearly concurrently. Due to flooding of the primary VMP an early test station, the backup VMP was used for all measurements during the cruise. A total of 31 VMP casts were attempted, with the first 13 rotating between the 3 mooring locations, another 13 during the wide-area survey (Butterfly pattern), and 5 upon return to the mooring triangle. A recurring electrical malfunction affected about 1/4 of the casts during the initial mooring survey and wide-area survey stages, with partially recoverable data. The malfunction worsened with repeated use, eventually rendering the VMP inoperable for the remainder of the cruise. We are 59 currently working on recovering data from the final 3 casts. Two T-Gliders were deployed shortly upon arrival in the SPURS sampling area. Except for a brief, ~1 day check-up period for each instrument, the gliders remained in the water for the duration of SPURS operations, or about two weeks. During the check-ups, each glider's MicroRider was found to have sustained minor flooding through its nose cone. Glider "Boomer," profiled to 200 m along lines between the PICO-N and WHOI moorings for the first half of the cruise, and the WHOI and PICO-E moorings during the second half. Glider "Helo" stayed within 2 km of the WHOI mooring throughout its mission and profiled to an initial depth of 50m, which was soon extended to 70m. A third T-glider, "Saul," was deployed for about a day during the dynamic positioning stations. Together the three gliders recorded 2235 successful microstructure casts, with 1668 from Helo and 567 from Boomer. ## **Deployment & Recovery** The primary method of deployment and recovery of the VMP is the HRP LARS system; a hydraulic valve spool controlling a set of forks and a winch perform most of the active movements for the system. On deployment, the line is attached to the bail of the VMP via a pin through a loop in the line. The VMP is released when the pin is pulled. To recover, the VMP is hooked forward of the LARS system and brought to the main hook where the winch line is attached to the bail. The VMP is raised out of the water and brought back on board. The gliders were deployed using a newly designed "rake" that holds the glider as it is lowered into the water using a crane and can be pull away once the glider is floating in the water. A small boat is required as a buoy is tethered to the gliders for the first few dives. Once the go-ahead is given the buoy is removed from the glider and the glider is set on its mission. To recover a glider, a small boat is driven to the glider and it is taken on board and brought back to the ship. Due to the sensitive nature of the probes, great care is taken when deploying and recovering the T-Gliders. #### **Instrument Details** The initial VMP deployed was SN008 "Vito". This instrument was seriously damaged due to failure of the aft bulkhead seal. Approximately half a cup of seawater entered the pressure case while the instrument was held at surface for its initial ballast checks. The electronics were stripped off the chassis, and the instrument parts were cleaned and investigated for signs of damage. The cause of the bulkhead failure was evident, though a main face seal failure seems likely. The second VMP, SN010 "Vader," was assembled to replace of the flooded instrument. Initial ballast checks with SN010 were successful. After a few casts, however, a failed o-ring was found on one of the new cables. Although there were no signs of further o-ring failures, the instrument continued to experience intermittent electrical malfunctions, or "glitches," on subsequent casts. The deep G2 glider, Boomer was prepared with MicroRider MR036, a high power MR with two shear, and two micro-temperature probes. Boomer initially sampled on upcast only, from a depth of 200m to surface. It was first deployed on September 14, 2012
in a triangle pattern west of the PMEL-North buoy. After the mooring deployments, Boomer was moved in closer to the moorings, and then spent roughly 10 days moving along a 20km North-South line just West of the PMEL-N/WHOI moorings. After being recovered due to a problem with sensors, it was found that the nose cone had flooded due to a pinched o-ring. The instrument was repaired and redeployed on September 25, 2012 along an East-West line South of the moorings. This glider profiled for an additional 175 upcast and downcasts to 200m. The shallow G1 glider, Helo was prepared with MicroRider MR065, a low power MR with micro-conductivity, two shear, and one micro-temperature probe. Helo initially sampled to 50 meters holding station near the WHOI mooring. This depth target was quickly adjusted to 70 meters after analyzing the CTD data from Boomer. Initial concerns about the light ballasting of Helo were still relevant, and the 70m target was probably the maximum depth capable of this glider. After six days, with some questionable results keeping the glider on-station, the waypoint behavior was transitioned to a more normal line a few kilometers long, roughly East-West, but still near the WHOI mooring. On September 18, Helo was recovered due to signs of sensor failure. Like with Boomer, the nose cone had flooded. Of the 411 profiles in this first segment, the first half appear fair, however, the last half exhibit clear issues as the single micro-temperature and one of the two shear channels succumbed to seawater. Also, a six-hour chunk of CTD data was missing due to a science motherboard error. Helo was repaired and redeployed on September 18, 2012. A total of 961 profiles were obtained during this second set. The same mission parameters were used for the remainder of its time in water until it was recovered on October 4, 2012. Helo looked to have encountered something in its travels, which "chewed off" the tips of both shear probes, and bent one of the prongs off the micro-conductivity. The shallow G1 glider, Saul (u064) was prepared for a deployment of up to 24 hours off-site at a salinity maximum. The glider was prepared with MicroRider MR049. Ballasting was performed in the water, alongside the small boat. It was determined that the glider flew well enough to release for mission, although some electrical issues with the science motherboard, coupled with flight and mission parameter issues resulted in no useful data from this deployment. It was useful in that we now know a bit more about two failure modes for both our MicroRider triggering method, and with the mission we had been relying on with our other gliders. ## **Data & Preliminary Results** The MicroRider internally records the microstructure data and CTD data from the glider is record on the science bay of the glider. The VMP internally records all microstructure and CTD data to one file. The glider records of microstructure and CTD must be matched up in time and depth. This requires carefully investigation of each cast, and thus only a few casts were processed on board the Knorr. The figure above is an example of the type of data collected by the VMP after our initial shipboard processing. This particular figure is for cast #019, which was done at the PICO-N buoy. From left to right the first profile is of salinity and temperature, the shear from the two shear probes, the temperature gradient from the micro-temperature probes, an estimate of dissipation from the two, and estimate of χ_T . Based on the data collected from the cruise, we created a composite of the microstructure of the region. The figure to below includes potential density, salinity, and temperature; buoyancy frequency; dissipation; χ_T ; K_ρ ; and K_{θ} . Initial review of the data collected from the gliders is promising. The plot below shows the days in which the diurnal warming was the largest during the cruise. The data is from Helo's upcasts only. The diurnal warming is very clear in the profiles and corresponding microstructure is available for those dives. # UW seagliders - Andrey Shcherbina ashcherbina@apl.uw.edu ## **Contacts:** Craig Lee craig@apl.washington.edu Charles Eriksen <u>eriksen@u.washington.edu</u> Luc Rainville <u>rainville@apl.washington.edu</u> Data web page: http://iop.apl.washington.edu/seaglider/index.php Fig. 1 SG189 during the "attitude adjustment" procedure. ## Instrumentation Each of the three wavegliders contains: CTD, Oxygen Optode, Fluorometer/scatterometer, Dual micro-T probes # **Deployment** | SG# | Deployment time (UTC) | Deployment location | Notes | |--------------|-----------------------|------------------------------|--------------| | 189 (pink) | 2012-09-13 18:01 | 24° 34.162′ N, 38° 01.845′ W | | | 190 (yellow) | 2012-09-15 17:58 | 24° 44.922′ N, 37° 55.505′ W | | | 190 (yellow) | 2012-09-16 16:33 | 24° 34.757′ N, 38° 03.970′ W | Redeployment | | 191 (yellow) | 2012-09-16 18:11 | 24° 34.690′ N, 38° 03.785′ W | | ## SG189 SG189 was deployed on September 13, 2012. During the first dives it became clear that the glider is out of trim (40° roll to STBD). Misaligned forward fairing (which has a keel weight) was hypothesized as the likely cause of the problem. On September 14, 2012, SG189 was recovered into a RHIB. Fairing misalignment was confirmed and corrected (Fig. 1), and the glider was redeployed. ## SG190 SG190 was deployed September 15, 2012. The first dives were unsuccessful due to the excessive buoyancy of the glider. It was determined that extra 200g of lead weight needed to be added. The same day, the glider was recovered with a RHIB. An attempt to add weight while in the RHIB failed (a piece of lead lost in the fairing), so the glider was brought on board Knorr. Overnight, 200g (50+50+100g) of lead was affixed in the inside of the aft fairing (at 3,9, and 6 o'clock positions, respectively, see photo.) Fig. 2 Added weight placement in SG190 (50- and 100-g lead strips visible). The glider was re-deployed the following day (September 16, 2012) without further complications. ## SG191 Prior to the deployment, it was determined that SG191 may suffer the same ballasting issue as SG190. To correct that, 100g of lead was added (50+50g, inside the aft fairing at 4 and 8 o'clock positions). SG191 was deployed on September 16, 2012 without an incident. ## **Navigation patterns** Seagliders 190 and 191 navigate the 140×140km box racetrack pattern (Fig. 3). SG189 navigates the smaller 50×50 km bowtie pattern. All the patterns are centered approximately at (24°34'N, 38°02'W), just S of WHOI mooring. Fig. 3 Seaglider positions as of October 7, 2012 and their navigation patterns. ## **Cross-calibration with Rosette CTD** | SG# | Dive # | CTD cast | Time | |-----|--------|----------|-------------------| | 189 | 76 | 97 | Oct. 4 20:34Z | | 190 | 41 | 44 | Sep. 26 | | | | | Sep. 26
18:05Z | | 191 | 38 | 43 | Sep. 26 | | | | | Sep. 26
16:44Z | CTD casts were started simultaneously with the gliders' dives, but there were much faster (30' vs. 1^h45'). Naturally, profiles diverged due to internal wave activity (Fig. 4). Agreement between Seagliders and Rosette CTD becomes much tighter in TS space (Fig. 5), with mean salinity offsets of O(0.01) (assuming accurate temperatures). Careful calibration will follow. Fig. 4 Differences between Seaglider and Rosette CTD temperature (left) and salinity (right) during simulcasts. Fig. 5 Differences in salinity measured by Seagliders and Rosette CTD during simulcasts as a function of temperature. #### STS/PAL APEX Floats #### Jessica Anderson During the SPURS R/V Knorr cruise, 26 Argo-type profiling floats were deployed for Dr. Stephen Riser from the University of Washington. Two (2) additional floats were damaged during shipment to the Knorr and were sent back to Seattle prior to departing Woods Hole. All floats deployed were equipped with Surface Temperature and Salinity (STS) and Passive Acoustic Listener (PAL) sensor packages in addition to the primary SBE41 CTD. The unpumped SBE STS sensor makes high vertical resolution (~10cm) temperature and salinity measurements from 30m all the way to the sea surface, operating in tandem with the primary SBE41 from 4-30m. The PAL uses a broad-band hydrophone to measure wind speed and rainfall acoustically while the float is drifting at a depth of 1000m between profiles. Additionally, the use of Iridium satellite telemetry allows for 2-way communication with the floats so that the float mission (depth, frequency, etc.) can be changed after deployment. Eight (8) floats were deployed during the transit to/from the SPURS region from Woods Hole/Ponta Delgada, respectively. An active hurricane season provided the opportunity for 2 of these floats to be deployed in the projected path of Hurricane Leslie. The remaining floats were deployed in a 4 by 4 grid surrounding the SPURS central mooring. Float spacing was approximately 0.5 degrees. All floats were deployed by lowering them on a line from the stern of the ship while moving at approximately 1 knot. Three (3) deployed floats failed for unknown reasons. One of these floats was recovered on 9/22/2012 and will be shipped back to Seattle for diagnosis. All deployed floats are part of the Argo program (www.argo.ucsd.edu) with support for the STS/PAL sensors provided by NASA in conjunction with SPURS. Data from the primary SBE41 CTD can be accessed in real-time via www.coriolis.eu.org. Additionally, raw data from the SBE41, SBE STS, and PAL sensors can be accessed at http://runt.ocean.washington.edu/. Deployment locations and sample profiles are provided below. ←Argo Float Endcap with SBE41, STS, & PAL Sensors **Transit Argo Float Deployment Locations** **SPURS Grid Argo Float Deployment Locations** # **SPURS Argo Float Deployment
Details** | Date | Float ID | Latitude | Longitude | Comments | |------------------|----------|----------|-----------|---| | 09/08/2012 17:14 | 7585 | 36.6545 | -58.9871 | Hurricane Leslie | | 09/08/2012 20:12 | 7594 | 36.3432 | -58.3153 | Hurricane Leslie | | 09/11/2012 04:50 | 7611 | 29.9949 | -47.0929 | | | 09/12/2012 01:44 | 7605 | 28.0006 | -43.3840 | | | 09/13/2012 22:20 | 7600 | 24.2520 | -38.2340 | SPURS Grid | | 09/14/2012 00:59 | 7543 | 24.2669 | -37.7548 | SPURS Grid | | 09/15/2012 02:55 | 7547 | 24.7528 | -37.7558 | SPURS Grid | | 09/15/2012 05:24 | 7582 | 24.7505 | -38.2516 | SPURS Grid | | 09/16/2012 00:42 | 6923 | 25.2514 | -37.7529 | SPURS Grid | | 09/16/2012 03:11 | 7572 | 25.2492 | -38.2546 | SPURS Grid | | 09/16/2012 05:41 | 7568 | 25.2426 | -38.7511 | SPURS Grid. Failed. | | 09/16/2012 08:27 | 7660 | 24.7473 | -38.7449 | SPURS Grid | | 09/17/2012 03:15 | 7631 | 25.2480 | -37.2490 | SPURS Grid. Failed. Recovered 9/22. | | 09/17/2012 07:00 | 7587 | 24.7212 | -37.2524 | SPURS Grid | | 09/17/2012 10:02 | 7699 | 24.2551 | -37.2651 | SPURS Grid | | 09/17/2012 13:10 | 7607 | 23.7579 | -37.2541 | SPURS Grid | | 09/17/2012 16:04 | 7569 | 23.7504 | -37.7508 | SPURS Grid | | 09/17/2012 19:01 | 7635 | 23.7491 | -38.2654 | SPURS Grid | | 09/17/2012 21:47 | 7681 | 23.7525 | -38.7522 | SPURS Grid | | 09/18/2012 00:42 | 7742 | 24.2519 | -38.7518 | SPURS Grid | | 09/22/2012 09:07 | 7604 | 25.3143 | -37.0677 | SPURS Grid. Replacement for Float 7631. | | 09/30/2012 11:34 | 7603 | 25.8030 | -38.7486 | SPURS Grid. Replacement for Float 7568. Failed. | | 10/05/2012 15:48 | 7599 | 26.9957 | -36.9675 | | | 10/06/2012 05:17 | 7595 | 28.9981 | -35.5422 | | | 10/06/2012 16:29 | 7574 | 29.9939 | -33.3164 | | | 10/07/2012 03:26 | 7598 | 31.0184 | -31.1957 | | ## SBE41 & STS Sensor Profile ## Wave Gliders – Dave Fratantoni and Ben Hodges Three Liquid Robotics, Inc. Wave Gliders were deployed from R/V Knorr (see Table). Each Wave Glider (WG) was equipped with two Sea-Bird GPCTD's, one at nominally 22 cm depth beneath the surface float and a second at approximately 660 cm depth on the sub. Additionally, each WG carried an Airmar PB200 Weather Station on a one-meter mast, and an Airmar CS4500 ultrasonic water speed sensor. On initial deployment each vehicle carried a small radar reflector on the met mast – these were subsequently removed when it became clear they were completely ineffective as radar targets yet likely contributors to mast breakage. | VehicleFlag Color | Deploy Time | Deploy Position | | |-------------------|----------------|------------------------|--------------| | WHOI-ASL2 Red | 15-Sep 1705Z | 37 56.50 V | V 24 44.70 N | | WHOI-ASL3 Yellow | 7 16-Sep 1340Z | 38 04.04 V | V 24 34.68 N | | WHOI-ASL4 Green | 16-Sep 1335Z | 38 04.00 V | V 24.34.70 N | **FIGURE:** Wave Glider WHOI-ASL2 (Red) prior to removal of radar reflector (seen on mast). Red's met mast was broken during heavy seas several days later and was repaired onboard. Two of three vehicles lost their flag staffs early in the mission. #### **Notable Events:** 15 September: deployed WHOI-ASL2 (red) 16 September: deployed WHOI-ASL3 (yellow) and WHOI-ASL4 (green) 19 September: untwisted WHOI-ASL4 (green) and removed radar reflector 20 September: recovered red to repair broken met mast, remove radar reflector 21 September: re-deployed red 24 September, 0400Z: sent yellow and green to park at wpts 13,11 near PICO-N mooring for maintenance tomorrow morning 25 September, 1000Z: untwisted WHOI-ASL4 (green). flag pole gone. removed radar reflector from WHOI-ASL3 (yellow). took two salinity samples (X26, X28) at 20 cm near green and yellow: 1000Z (37.7017, 37.7079) 26 September: very rainy this morning. lowest salinities seen so far, near 37.0. 5 October: likely mast breakage on WHOI-ASL4 (green) noted at 1100Z. strong wind and large (5m+) waves from TS Oscar changed all vehicles to 10 minute telemetry interval -- first month's iridium bill was wicked large. Red completely stopped while heading west in TS Oscar -- back on course next morning but almost certainly twisted. 6 October: shut off weather station on green -- mast down. red experiencing some GPS acquisition problems. Seemed to recover OK. ## Sampling Plan The three WG are following pre-determined tracklines within a 100 km box surrounding the SPURS moored array. The tracklines pass just outside the watch circles of the moorings. Several crossover points will allow occasional comparison between sensors during the mission. **FIGURE:** WG trajectories from 16 Sep - 6 Oct. Note that Red's positions while aboard the R/V Knorr for met mast repair have not been removed from this figure. #### **Initial Results** The Wave Gliders measure salinity just below the surface (nominally 22 cm) and at a depth of about 6 m. Under light wind and wave conditions we observed substantial warming, and small but measurable salinification, of the upper 20 cm relative to the 6 m measurements. Rain events were also particularly notable in the near-surface salinity record. In higher wind and wave conditions measurements from the two depths were generally indistinguishable. WG CTD and meteorological observations have thus far shown excellent agreement with moored and shipboard measurements. WG CTD cross-calibration and inter-platform comparison will continue during the planned one-year deployment period. FIGURE: Time-series of temperature, salinity, and float-sub differences for the first 20 days of WG deployment. (a) Temperature at 6 m, (b) Temperature difference between 20 cm and 6 m – positive = warm surface. (c) Salinity at 6 m. (d) Salinity difference between 20 cm and 6 m – positive = salty surface. FIGURE: T-S plot for all WG data collected prior to 6 October. Colors correspond to WG-inferred wave height (yellow > 2.5 m, red > 4 m). ## **Data Access** All WG data is transmitted via Iridium SBD messages, archived at LRI, and retransmitted to WHOI/ASL for initial processing and QC. Hourly-averaged scientific data and relevant supporting measurements are generated several times per hour and forwarded to JPL for assimilation and general access by SPURS participants. Raw data is available on request (dfratantoni@whoi.edu). ## **Ecomappers** -Ben Hodges and Dave Fratantoni OceanServer Technology, Inc. manufactures a small (~30 kg) propeller-driven AUV called the Iver2. YSI Incorporated, together with SonTek, outfits these vehicles with a suite of their sensors, and sells them under a new name: Ecomappers. They are capable of operating at depths of up to 200 meters; at a maximum underwater speed of 3.5 knots, they have an endurance of approximately 5 hours. Navigation is done by GPS at the surface and by compass and Doppler Velocity Log (DVL) when submerged. Two Ecomappers (serial numbers 106 and 107) completed a total of 34 science missions over 2 days as well as several test missions during the cruise. Each vehicle was equipped with a YSI CTD, a YSI oxygen sensor, a YSI chlorophyll fluorometer and turbidity sensor, a Neil Brown Ocean Sensors Inc. CTD, and a 5-beam SonTek DVL. Their acoustic modems and sidescan sonars were not used. Figure: Ecomappers on deck, just prior to deployment from the fantail of R/V Knorr. Early in the cruise, both Ecomappers were lowered into the water as a rough ballast check. During this test, one of them (107) detected a leak. Approximately 50 cc of water was found inside the pressure case, but no damage was immediately apparent. Shortly thereafter, OceanServer announced by email that the propeller shaft seals they had just installed were a leak risk and needed to be repaired. Detailed instructions for the repair procedure, which consisted of adding a small spacer to the propeller shaft to prevent it from moving longitudinally, were obtained. A suitable spacer was located and installed in Ecomapper 107, which then passed leak tests in the lab and on deck in a bucket, where its propeller could be spun without risking damage. Initial results presented here are limited to temperature, as the salinity data still require some quality control, in addition to conductivity calibration and thermal lag correction, as of this writing. Underwater positions shown in the following differ from those recorded in the raw data—they have been corrected using the difference between the expected and actual surfacing locations, assuming a uniform drift while submerged due to current and DVL bias. Direct requests for data to dfratantoni@whoi.edu or bhodges@whoi.edu. ## Diurnal Stratification Experiment, 29-30 September Early on the morning of September 29, R/V Knorr began holding station at 25° 30' N, 38° 30' W. At dawn, Ecomapper 106 was deployed, starting its first mission at 0820Z. Over the next 18.5 hours, Ecomapper 106 completed a total of 23 missions, and Ecomapper 107 completed 10. Each mission consisted of an outward leg to a distance of 600-700 meters from the ship, and a return leg following nearly the same track. The outbound legs were run either at the surface, at a constant depth of 1 meter, or undulating between depths of 0 and 5 meters. All of the return legs were undulating, either between 0 and 5 or 0 and 10 meters. 28 of the missions ran to the south from the Knorr's position; the remaining 5 ran to the east. In the morning, the surface layer of was well mixed, but in the calm sunny conditions, significant stratification developed in the upper meter by midday. This stratification strengthened and deepened during the afternoon. Toward sunset, it began to decay, and by 0200 local time, it had nearly vanished. To capture the evolution of this diurnal stratification, it is important to sample undisturbed water, far enough from the ship to avoid the churning of its screws and the mixing it causes as it bobs in the waves. The homogenizing influence of the ship on the upper
meter or two is obvious out to a radius of over 2 shiplengths. Figure: Temperature measured during the diurnal stratification experiment. Upper panel: tracks from all 33 missions; temperatures of the upper 30 cm made between 1300Z and 2000Z (the period of maximum stratification) are indicated by color. Segments of the tracks from other time periods and deeper layers are drawn lightly. Lower panel: average temperature profile, excluding contaminated measurements near the ship, for each of the 33 missions. Each profile is plotted at the time it was measured. The horizontal scaling of temperature is 1 degree C = 1 hour. Sunrise and sunset are indicated but upward and downward triangles, respectively. ## Small Scale Horizontal Survey, 30 September At 0400Z on 30 September, Ecomapper 106 was deployed for the final time. The first leg of its mission was an undulation between the surface and 10 meters, which took it well into undisturbed water. It then began a lawnmower-type survey of a 450-meter square at a nominal depth of 1 meter. 13 meridional transects 1 meter below the surface were connected by short turnaround segments at the surface, allowing for periodic GPS fixes and profiles of the upper meter. The calm, sunny conditions produced an average stratification over the survey area of 3° C (with surface temperatures in some locations reaching 30.8° C) and approximately 0.1 psu over the upper 10 meters, most of it in the upper meter. This stratified layer supports internal waves, which were visible from the ship as surface slicks, and show up clearly in the plan view of 1-meter temperature. Left panel: Objective map of temperature at 1.1 meters below the surface. The vehicle deviated from this surface by 6 cm RMS, and the effect of these deviations is corrected for using the local vertical temperature gradient prior to mapping. Circles mark the locations of measurements used in the map, and arrows the average current inferred from each north-south round trip. Note the internal wave crest and trough. Right panel: Average temperature profile from the entire mission. The gray histogram represents the depths at which the measurements used in constructing the map were made. Note the extreme stratification in the upper meter. Contacts: Eric D'Asaro <u>dasaro@apl.washington.edu</u> Andrey Shcherbina <u>ashcherbina@apl.washington.edu</u> Data web page: http://mlf2data.apl.uw.edu:5984/mlf2db/... #### Instrumentation An autonomous Lagrangian float (MLF, 1) was deployed at the WHOI mooring site and is expected to drift through the experiment area during the year of measurements. The float will alternate between 6-hourly profiles to about 100m and truly-Lagrangian (water-following) drifts within the mixed layer during which the vertical kinetic energy and fluxes will be measured. The floats carry redundant conductivity, temperature and pressure sensors (2x SBE 41 + SBE STS), for the estimation of tracer fluxes and turbulence structure, as well as pressure gradient and ambient noise sensors, for the estimation of scalar surface wave spectra, rain rate and wind forcing. All data is relayed in nearly real-time over the Iridium satellite uplink. ## **Deployment** Deployed: 18 September 2012, 19:20 UTC Location: [24°34.41 N, 37°48.43W] Fig. 1 (left) MLF prior to the deployment. (right) planned MLF mission Figure 2. MLF drift map (as of October 7, 2012) #### **Calibration** All three CTDs on the float are new and factory-calibrated. In-situ comparison of top and bottom SBE 41s show salinity difference of 0.003 (preliminary result). Surface salinity measurements are routinely compared with one of the reference CTDs to monitor STS calibration (Figure 3). Presently, it shows drift of -0.0044/day or ≈ -1.6 /year. Figure 3. Surface salinity sensor offset relative to SBE 41. Figure 4. Evolution of temperature (top) and salinity (bottom) based on MLF profiles. Lagrangian drift periods are marked with green bars in top plot. #### Cruise Report: Meteorological Mast -Steve Faluotico A suite of meteorological instruments were installed on the *Knorr* while the ship was docked in Woods Hole (PIs: Farrar and Edson). The bow mast carried a freshly calibrated, modified VOS (Volunteer Observing Ship) IMET package, measuring short- and long-wave radiation, vector winds, humidity, and air temperature. The sensors are identical to those on the WHOI buoy, but the electronics are housed in fiberglass cases. The VOS IMET package recorded data at one-minute intervals, and the winds were corrected for the ship's motion and heading. Other instruments were installed for the purpose of making direct covariance flux measurements for the cruise. A custom data logger made at WHOI known as a mini node recorded the data. Below is a list of the instruments, their quantity and their sample rate. Vaisala PTU200 1Hz : - pressure, temperature and humidity Radiometers 1Hz: Kipp & Zonen solar and infrared Rain Gauges (2) 1Hz: - Young Model 50202 Sea Snake 1Hz: sea surface temperature Licor 7500 Infrared Gas Analyzer (2) 20Hz: CO2/H2O GPS 1Hz: - Hemisphere Crescent VS100 DCFS (Direct Covariance Flux System, WHOI Custom) 20 Hz: #### Consists of: - Gill R3-50 Sonic Anemometer - Systron Donner Accelerometer - PNI Compass All of the data, but especially the atmospheric turbulence data, require careful shore-side processing to be made fit for scientific analysis (e.g., turbulent wind fluctuations cannot be estimated until a correction is applied for the ship's motion using the motion-package data). This will be completed in the coming months, and the data will be made available then. For data and questions contact: Tom Farrar (jfarrar@whoi.edu) Jim Edson (james.Edson@uconn.edu) ## Cruise Report: SSS Drifters -Ray Schmitt Eighteen Pacific Gyre Surface drifters were deployed equipped with SeaBird Seacat CT sensors. They were generally deployed in their cardboard boxes, which are designed to release the float when wet and start automatically. In one instance a float was unpacked and started immediately so there was no delay in data reporting (time series station). The drifters were released in 4 groups of 3 (triplets) for dispersion studies and the remaining six were deployed individually, with three of them at the three mooring sites, another at the time-series station and the remaining two during the large-scale survey. Their drift tracks and salinity values can be seen in maps of the Data Management section. | YearMoDaTime | Note | Latitude | Longitude | Drifter numbers | |---------------|-------------------|-----------|-------------------|--------------------------------| | 20120917.0334 | Triplet | 25.227515 | <u>-37.251950</u> | SSS Drifters 36300 36648 36301 | | 20120917.0705 | Triplet | 24.708161 | -37.254434 | SSS Drifters 37658 37662 37661 | | 20120917.1001 | Triplet | 24.254765 | -37.262389 | SSS Drifters 36653 36322 36654 | | 20120917.1249 | Triplet | 23.768323 | -37.249288 | SSS Drifters 36718 36659 36658 | | 20120920.1340 | PMEL-N
Mooring | 24.783670 | <u>-37.921735</u> | SSS Drifter # 36719 | | 20120920.2114 | PMEL-E
Mooring | 24.484435 | <u>-37.767927</u> | SSS Drifter # 36726 | | 20120921.0212 | WHOI
Mooring | 24.550653 | <u>-38.033828</u> | SSS Drifter # 36727 | | 20120929.0604 | Survey | 25.501416 | -38.498227 | SSS Drifter # <u>36632</u> | | 20121001.2313 | Survey | 25.142102 | -38.045952 | SSS Drifter #. 37300 | | 20121003.0947 | Survey | 24.490648 | -37.349338 | SSS Drifter # 36472 | #### **Cruise Report: Data Management Component** Frederick Bingham, Yi Chao, Peggy Li, Zhijin Li and Quoc Vu This document constitutes a report of the activities of the data management team for the SPURS project for the Knorr cruise, Sept. 6 - Oct. 9, 2012. The data management team's (DMT) primary activity on the cruise was situational awareness. That is making the chief scientist and science party cognizant of the continuously evolving fleet of observing assets deployed during SPURS, and providing them with model output and satellite images to help plan the activities. There were several categories of activities carried out as a result. - 1. Providing weather information. The cruise was very fortunate in that it dodged three hurricanes, Leslie, Michael and Nadine, and one proto-tropical storm. Hurricane Nadine was one of the longest-lived Atlantic named storm on record at 24 days of existence. We received daily weather model forecasts from ECMWF courtesy of Brian Ward. These forecasts were viewed by the chief scientist and members of the science party. - 2. Providing model output. Gene Li ran the ROMS model every day during the cruise and downloaded HYCOM output. The ROMS assimilated data collected on the cruise, CTDs, underway data, etc. Model output in the form of images and model data were available through the SPURS web page and through the SPURS daily download ("daily tarball"). These model runs could be visualized along with observing assets (Figure 1). A couple of the students played around with the model data. - 3. Visualizing observing assets. Positions of observing assets were constantly tracked. The assets tracked were salinity drifters, GTS (no salinity) drifters, Argo floats, STS floats, seagliders, wavegliders, underway data from the Knorr, underway TSG data from the French tenuse glider and CTD data from the Knorr. These assets could be viewed from the SPURS web page using a simple interface (Figs. 2 and 3). - 4. Downloading and visualizing observing assets. The daily tarball contains a series of images and KML and KMZ files that can be visualized using Google Earth (GE). Figure 1 shows and example of this. GE is a much more sophisticated geobrowser than is available through the web interface (Fig. 2). GE gives one the ability to zoom in and out, animate, turn layers on and off, change colors, turn parts of elements on and off, etc. One can bring other assets into the visualization
than are visible in the web interface. This is done through image overlays and network links. We were able to download and visualize various satellite products through these techniques. With GE one can create custom KML files to display data in many sophisticated (or not) ways. For example, the addition of the tenuse glider data was accommodated by the creation of its own set of KML files. An example of some more sophisticated visualization is provided in Fig. 4. Finally, it should be noted that most observations were made available to the visualization system on the SPURS website within a couple of hours. - 5. Collecting and organizing datasets. As the cruise was proceeding, the DMT collected and organized many of the various data streams that came in (see item 3 above). Some of these were provided to other members of the science party in the form of MATLAB .mat files. They will also be available after the cruise either from the PI involved, by contacting the DMT or by going to a web interface or ftp site (Table 1). The data were also made available to the modeling team for assimilation. - 6. Data access and archive. Although not strictly a cruise activity, the DMT is committed to providing continuing access to SPURS data to all SPURS PIs. We are also committed to making sure the SPURS dataset is archived and preserved in a way that allows continued access to the data well into the future for anyone who is interested. For everyone's convenience, I have created a combined SSS dataset and a profile T/S dataset for your convenience. It is available by contacting me. The SSS dataset combines all the datasets I had access to, including gliders, underway, floats, drifters, etc. The various instruments measure SSS at somewhat different depths, so combine them together with caution. The profile data include floats, CTD casts and seaglider dives, but *do not* include UCTD data. However Tom Farrar has provided a nice gridded product for those interested in using the UCTD data as well. Contact him for details. These are all put together in two .mat files that you should be able to load up and use immediately. Julian Schanze has created a couple of very useful gridded velocity products from the LADCP and shipboard ADCP instruments. Contact him for access. Of course, none of the datasets included here are yet ready for scientific publication. They are all preliminary and should be treated as such. Also they should not be shared with anyone outside of SPURS without permission of the PI involved. **Table 1** A summary of the availability of different datasets. Note, please do not share data outside of SPURS investigators without the permission of the PI involved. Datasets are considered preliminary until finalized by the PI. | Dataset Name | How do I get it? | |---|--| | Knorr Underway including TSG and shipboard ADCP | Contact the DMT | | Lowered ADCP | Contact the DMT or Julian Schanze | | Knorr CTD | Contact the DMT | | Underway CTD | Contact the DMT or Tom Farrar | | Waveglider | Contact the DMT or Dave Fratantoni | | Seaglider | Contact the DMT or Craig Lee | | STS Floats | http://runt.ocean.washington.edu/argo/data/
Float ID's for SPURS floats are shown in Table 2. | | Salinity Drifter | ftp://spurs.ucsd.edu/ (username: spurs, password: ftp4uspur) | | Tenuse glider data | Contact Gilles Reverdin | | VMP and T-gliders | Contact Lou St. Laurent | | Thalassa underway data | http://www.coriolis.eu.org/Data-Services-
Products/View-Download/Data-selection
Use platform "FNFP" for the Thalassa | | WHOI Mooring | http://uop.whoi.edu/projects/SPURS/spurs.html | | Aquarius data | http://podaac.jpl.nasa.gov/datasetlist? ids=Platform&values=AQUARIUS_SAC- D+&search= | | Neutrally Buoyant Floats | Contact Andrey Scherbina | | Model Results | Contact the DMT | | Prawler Mooring Data | Contact Billy Kessler | **Table 2.** A list of ID numbers for floats deployed in the SPURS central area. The table layout reflects where in the 4X4 grid each float was put out. These IDs do not include floats deployed in transit to or from the SPURS site. Note, float 7568 apparently died soon after deployment and was replaced late in the cruise by 7603. For float 7543, the STS data have been deemed to be poor quality, though the regular profile data are fine. | 7603 (7568) | 7572 | 6923 | 7604 | |-------------|------|------|------| | 7660 | 7582 | 7547 | 7587 | | 7742 | 7600 | 7543 | 7699 | | 7681 | 7635 | 7569 | 7607 | **Figure 1.** An example of the SPURS data display in GE. The background colors depict levels of salinity from the ROMS model. Arrayed on top are some observing assets, drifters (pink circles with 5 day tails), moorings (red markers), STS floats (brown triangles), the Knorr cruise track (blue markers), the tenuse glider (another blue marker partially hidden by the WHOI mooring marker) and a radiator pattern (blue line) the ship did the last 4 days of observation. **Figure 2.** Visualization page from the SPURS website. This page is available at the SPURS web page (http://spurs.jpl.nasa.gov), by clicking on "SPURS Data" and "Visualization". The interface is based on the Google Earth API with a browser interface. It can be moved around and zoomed in and out of using a mouse and scroll wheel. The menu down the left hand side allows users to select from various datasets for display and to choose the specific dates they are interested in. Note the "Download Daily Images", "Download ROMS Output" and "Download Daily Forecast" buttons. The first gives access to the daily tarball, the second to the ROMS output for the day and the third allows one to see the ECMWF forecast. The "Latest IR" button brings up the most recent IR cloud image for the Atlantic. The "Hurricane Track" button kept scientists informed of the tracks of the hurricanes we dodged during the cruise. The symbols in the image are described in the legend at the bottom right. Each symbol can be clicked on to get a pop-up window with more information about the asset (Fig. 3). **Figure 4.** Visualization of the surface salinity for Sept. 29- Oct. 4. Color scale is displayed at right. This display includes all data available.